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(K) = (30/7)kza2/m . ( 3 )

The four  coreless central  pa i r  potential models which
we consider are2

(A) Square well :  V s  (r) = 1 — Vo r <  ro (4)
0 r a .  ro ;

(B) Exponential wel l :  V 0 ( r )  = — Vo exp(— r / ro)  ; (5)

(C) Yukawa well: Vy ( r ) =  — Vo(ro /r)exp(— r / ro)  ; (6)

(D) Gaussian well:  V G  (r) = — Vo exp(— r 2 / 4 )  . (7)
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The ground state of molecular trimers is studied in three dimensions for these pair potential models: the
square well, the exponential, the Yukawa, the Gaussian, and the Lennard-Jones 12-6. Three spin cases
are considered: three spin-zero bosons and the spin-(1/2) and spin-(3/2) states of  three spin-(1/2)
fermions. Variational wavefunctions are constructed which satisfy the exchange symmetry requirements for
these cases. Bounds are obtained for the threshold coupling constants at which self-bound trimers occur.
Consequences for possible self-bound trimers of 3He are discussed.

I. INTRODUCTION

In quantum mechanics, p a r t i c l e s  are classed as bo-
sons o r  fermions and accordingly the i r  states show d i f -
ferent symmetr ies under exchange of  part ic le labels.
The consequences are readi ly  observed even for  atoms,
as in the mutual scatter ings'  of  helium atoms or  of  neon
atoms. H e r e  we t reat  exchange effects between such
massive objects near the threshold for  three-par t ic le ,
or t r ime r,  s e l f -binding.

We study the ground state of  three identical par t ic les
in three dimensions interact ing via central  pa i r  poten-
t ials. A s  models fo r  the pa i r  potential we use the square
well, t h e  exponential wel l ,  t h e  Yukawa well, t h e  Gauss-
ian wel l ,  a n d  the Lennard-Jones 12-6  potential. T h e
f i r s t  f ou r  models are coreless potentials2 fo r  which we
have var iat ional  wavefunctions fo r  which the energy ex-
pectation value can be reduced analyt ical ly and which
locate the threshold coupling constants wi th in narrow
ranges. W e  use resu l ts  obtained fo r  these models as
guides in  the t reatment of the Lennard-Jones model,
which is  a  useful model fo r  ine r t  gas t r imers .

The iner t  gas t r i m e r s  f o r  which sel f -binding is  in
doubt3 are t r i m e r s  of the fermion isotope of  helium,
3He, and  we use our  resul ts  fo r  the Lennard-Jones
model to re inforce an ear l i e r  conclusion3 that sel f -
bound 3He t r i m e r s  are unl ikely.

The corresponding question in nuclear physics is  on
the occurrence of  a bound trineutron4; o u r  treatment
is s imp le r  because in  the nuclear case there are s ign i f i -
cant spin-dependent forces to be included.

In Sec. I I  we present our resul ts  fo r  the boson t r i m e r
for  the coreless potentials; t h e  Lennard-Jones model
has been treated elsewhere. 3 I n  Sec. I I I  we give a
general discussion of the effect of exchange symmetry
requirements on the ground state of  the fermion t r i m e r.
Sections IV  and V  contain the resu l ts  of var iat ional  ca l -
culations for the spin- (1/2) and spin- (3/2) fermion t r imers
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with coreless potentials. T h e  resu l ts  of Secs. I I ,  I V,
and V are col lected in  Tables I  and I I  and are appraised
in Sec. V I .  T h e n  we present our resul ts  fo r  the Len-
nard-Jones fermion t r i m e r s  in  Sec. V I I  and a f inal  d i s -
cussion in Sec. V I I I .  A n  Appendix is  included which con-
tains a review of the group theoret ical  treatment of the
states of  three par t ic les in  a r i g id  equi lateral  t r iangle
configuration.

It. BOSON TRIMER: CORELESS POTENTIALS

Most attempts3' 5-9 at evaluating the ground state energy
of iner t  gas t r i m e r s  have used var iat ional  methods.
For three spin-ze ro  bosons, t h e  t r i a l  wavefunctions
have been of zero total  angular momentum10 and have
usually been of the Jastrow form.

We have found" that for  three spin-zero  bosons in -
teracting v ia central  coreless pa i r  potentials a useful
variat ional wavefunction is13

X I ,  2, 3)=Nexp[— 0/(1'12+ r23 + r31)] (1)

where r i i  are the in terpar t ic le  distances and N  is a nor-
malizat ion constant. T h e  Rayleigh—Ritz expectation va l -
ue fo r  th is  funct ion can be found analyt ical ly,  t he  func-
tion has the qual i tat ively cor rec t  exponential behavior
at large in terpar t ic le  separations, and  near the threshold
for  sel f -binding i t  y ields a lower energy than a product
of Gaussians.

We have calculated the expectation value of  the kinet ic
energy operator

— (h2/2772)(V j+ V v 3 )  ( 2 )

for  three par t ic les  of mass in wi th Eq. (1),  us ing  o rd i -
nary Cartesian coordinates, a n d  f ind

For a l l  of these we define dimensionless var iat ional
parameters x  and coupling constants K  by
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TA B L E  I .  T h r e s h o l d  coupling constants f o r  se l f -binding.

Two body Three body

Pai r  mode l ' A. K , ( 1 =  0) B. K,(1 = 1) C. K r ( 1  = 0)f D. K r )  e  = 1 / 2  =1 g E .  K "  (  s =1/2 1 =1 )h

Square wel l 7r2
4 =  2.4674" 72=9.8696" 2.096023 4.077222 7.238101

Exponential 1.446° 7.049° 1.222041 2.373106 5.021898

Yukawa 1.67982d 9.082° 1.462678 2.834612 6.655844

Gaussian 2. 684° 12. 100° 2.247772 4.368196 8. 896328

x4E 5  x 2 x 2
1+ ((  )

5x3
+ 2  +  x42

3 x 4

+

2

a-" ;

x3 \

(10)
— +3 Vo 5 6  K  8 4

for the exponential well,

E 5  (  x2 \  ( 2  x 5
3 Vo  5 6  K  T i . 7 - 7 7 (1+x)4 + 7 (3. -7377
for  the Yukawa well,

E 5  ( x 2 \  /  x 5 x4 x3

(11)

3V0 - 56 Vii(T+7)1- 71(17-7
(12)

E 4 (x_  2  q 1 4 x
3V0 65-6 \ 2 / +  2 1 (  2 ) + L21 \( 2

-.1(21 J,T ex2/4 [ — e r f ( 2 - 3 ,  ( 1 3 )+ 3-(27  20)3]

TABLE  I I .
form.

T r i m e r  threshold coupling constants i n  reduced

Pair model" F b . G. A —c Hb. 12A • I"  A J". Kb.
Square well 4.000 0.849 1.652 2.933 0.413 0.733
Exponential 4.875 0.845 1.641 3.473 0.337 0.713
Yukawa 5.407 0.871 1.688 3.962 0.312 0.733
Guassian 4.508 0.838 1.628 3.315 0.361 0.735

'Models defined i n  Eqs. (4)—(7) o f  text, coupl ing K  defined i n  Eq. (9 ) .
"F rom analyt ical  solut ion of the Schrodinger equation.
' F r o m  analyt ical  solut ion in te rms  of  zero of a Bessel function, Re f .  2 .
'References 2 and 13.
°Values obtained by our  numer ica l  solut ion of  the Schr6dinger equation.
f l ipper  bound fo r  three boson threshold, obtained as described in  Sec. I I .
'Upper bound fo r  spin-(1/2)  threshold o f  three spin- 1 / 2  fermions,  obtained as descr ibed in
Sec. I V.

"Upper bound fo r  spin-(3/2)  threshold o f  three spin- 1 / 2  fermions,  obtained as descr ibed in
Sec. V .

x= 4 aro , ( 8 )

K - m r g V o / k 2  . ( 9 )

Taking the expectation value of the potential energies
with the t r i a l  function Eq. (1),  adding the kinet ic energy
Eq. (3) ,  and  using the definit ions Eqs. (8 )  and (9), w e
find upper bounds on the ground state energy: f o r  the
square well,

and fo r  the Gaussian well,

where erf(z) is the e r ro r  function erf(z) = 2( hr i /z )ge- t i  dt.

For  given coupling constant K, t h e  var iat ional  en-
ergies were min imized as a function of the parameter
x and the values of K  at which the var iat ional  energy
f i r s t  becomes negative were found. S i n c e  fo r  each po-
tential the var iat ional  energy is  an upper bound to the
exact ground state energy, th is  procedure gives upper
bounds to the threshold coupling constants fo r  sel f -b ind-
ing. W e  analyzed Eqs. (10)—(13) numer ica l ly  and our
results are entered in  Column C of  Table I .

Columns A and B of Table I  are threshold coupling
constants2'13 fo r  two-body states of zero and one uni t
of angular momentum. T h e y  are used in  forming the

reduced threshold constants which are presented in
Table I I  and discussed in Sec. V I .  C o l u m n  G is  the ra t io
of Column C to Column A: H a l l  and Post14 proved the
values in  Column G must be l a rge r  than l ;  B r u c h  and
Sawadals showed that the exact (true) ra t ios  fo r  three
bosons must be less than 1. C o l u m n  G is  an upper bound
on the exact values and represents a considerable i m -
provement on the Bruch-Sawada upper bound.

III. F E R M I O N  TRIMER EXCHANGE REQUIREMENTS

We consider t r i m e r s  composed of three ident ical
spin- (1/2)  part ic les.  A s  these are fermions and obey
Fermi—Dirac stat ist ics,  t h e  tota l  t r i m e r  wavefunction
must be ant isymmetr ic  under pa i r  exchange and sym-
metr ic  under three-cyc le  exchanges.

We construct  t r i m e r  wavefunctions in which the spat ial
components have one unit  of angular momentum, P
states. I t  i s  possible to construct wavefunctions fo r  the
fermion t r i m e r  of zero spatial  angular momentum but
we have made our  var iat ional  search for  the threshold of
fermion t r i m e r  sel f -binding in P states fo r  several  rea-
sons: ( 1 )  By analogy with the two-body problem, i t  is
plausible that the wavefunction nodes required by the
antisymmetry can be introduced with the least  increase
of energy by rotat ional  motion ra ther  than by the exci ta-
tion of  re lat ive motion of the par t ic les.  ( 2 )  In the semi -

'Models defined i n  Eqs, (4)—(7) o f  text.
"Entr ies in  these columns are ra t ios  o f  entr ies i n  the designated
columns of  Table  I ;  f o r  discussion see Sec. V I .
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classical fermion t r imers ,  t rea ted  in  Appendix A, t h e
lowest states are P  states. ( 3 )  F o r  the spin- (3 /2)  t r i -
mer, H a l l ' s  lower-bound comparison prob lemn has one
unit of angular momentum. ( 4 )  The nuclear physics
model calculations fo r  t r ineutrons have emphasized P
states. 4

The thresholds we f ind i n  the t r i m e r  P states are be-
low the thresholds f o r  the d imer  P states; then a dem-
onstration tha t  the expectat ion value of the Hamiltonian
is negative re la t ive  to the energy of three wel l -separated
part ic les is  suff ic ient  to establ ish self-binding of the
three part ic les.  H o w e v e r,  t h e  thresholds we f ind are
above the thresholds fo r  d imer  S states, wh i ch  opens a
question whether the spin- (1 /2 )  t r i a l  function we use i s
sufficiently general.  I n  S states the t r i m e r  calculations
would be more  delicate; one  would have to establish that
the t r i m e r  energy i s  lower than the d imer  energy. F o r
three bosons, t h i s  is  established by the Bruch—Sawada
upper bound.15 E f i m o v "  showed for  three bosons that
there are weakly bound t r i m e r  states just  below the
threshold fo r  d imer  binding; h e  also showed17 these
states do not ar ise in the mixed symmetry  state (S= 1/2)
of three ident ical  spin- (1 /2)  fermions.  T h a t  is, t h e r e
are no Ef imov states to prove the spin- (1 /2)  t r i m e r
threshold is  below the d imer  threshold and the lowest
spin- (1 /2 )  t r i m e r  bound state is  l i ke ly  to be the P  state
for  the reasons given above. S u c h  questions do not
arise fo r  the spin- (3 /2)  t r i m e r,  whe re  we have located
the threshold between narrow l im i ts .

A. Spin structure

The t r i m e r  wavefunction is  composed of  spatial and
spin parts. I f  the spins align, t h e  t r i m e r  has spin- (3 /2)
and the spin representation comes f rom the spin quartet.
If the spins do not a l l  align, t h e  t r i m e r  has spin- (1 /2 )
and the spin representat ion comes f r om  each of two pos-
sible spin doublets, hence the reference to the spin- (1 /2)
case as the "m ixed-symmet ry "  t r i m e r.  O n e  doublet,
X2, c a n  be constructed16 to be symmetr ic  and the other
doublet, X „ ,  t o  be ant isymmetr ic  under the interchange
of part ic les one and two.

Expl ic i t ly,  t he  +1 /2  project ions of the doublets are

X0(si= 1/2) = (1/12-)(al 02 a3 -  Ql a2 a3) , ( 1 4 )

Xs(sz= 1/2) = (1/1-6-)(2ala2i33 -  ali32a3- i33a2a3) ,

where the a(13) are the usual spin up (down) eigenstates
of a spin- (1 /2)  par t ic le  and the subscr ipts are the pa r t i -
cle labels.

B. Parity

We requ i re  that 0 be a par i ty  eigenstate, 18 i .  e.,

P 0 = ± 0 (15)

The effect of par i ty  is  only on the spatial  or ientat ion of
the t r iangular  configuration o f  the three part ic les;  t he
interpart ic le distances remain unchanged.

The r i g id - r o t o r  wavefunct ionsn'n D„,1„,,(a, 13, y), i n
which 1 is the total  angular momentum quantum number,
m i s  a space-ax i s  projection, a n d  m'  i s  a body-ax is

projection, p rov ide  a set of angular momentum states
with par i ty  eigenvalue ( - 1 )  " .  I n  an expansion of a
three-par t i c le  wavefunction 0 using these states, t he
requirement that 0 be a par i ty  eigenstate means that
only even or  only odd m '  appear. 19

C. Sp in -13/2) trimer

The spin par t  X  of the spin- (3 /2)  t r i m e r  wavefunction
comes f rom the spin quartet, each  member of which is
invariant under three-cyc le  exchanges and pai r  ex-
changes. T h u s  the remaining factors of the wavefunc-
tion must be ant isymmetr ic  under pa i r  exchanges. T h e
wavefunction is  factored

0= 44x ,
and expanded

ony E Digm, m m ,
=-1

(16)

(17)

The gm, are functions of the in terpar t ic le  distances.

We are guided by the special  case of  the equi lateral
triangle20 treated in  Appendix A to construct  a t r i a l
function with 1= 1 and reta in ing only the m'  = 0 com-
ponent. T h i s  i s  a par i ty  eigenstate.

D. Spin-(1/2) trimer

For  the mixed-symmet ry  t r imer,  w e  must modify
Eqs. (16) and (17) to al low fo r  the construct ion of 71) f rom
both of the spin doublets,16 Eq. (14),

0= Oa xs O s  Xa ; ( 1 8 )

(Pa and 0 ,  are ant isymmetr ic  and symmetr ic ,  r espec -
t ively,  unde r  the pa i r  exchange of one and two, s o  that
ti) i s  ant isymmetr ic  under the one—two exchange.

Applying pa i r  exchange, P12, and  cycl ic  exchange,
Cu3, t o  the spin doublets of  Eq. (14) we have

P12 Xs = Xs

C323X3= (—) X s  + 1.ra)Ca ; ( 1 9 )

P12 Xa X a

C123 X„ = — Z VTX, — y Xa . ( 2 0 )

Requiring that 0 in  Eq. (18)  be ant isymmetr ic  under
P1, and symmetr ic  under Cly3 leads to the relat ions

P12 Oa ( P a

Ci23 <Pa = (—) 2 O a +  / V. -30s  ;

P12 Os = 3

C123 =  V T ( P a  ( P s  •

(21)

(22)

As in  the spin- (3 /2 )  case we construct a t r i a l  function
with one uni t  of angular momentum:

= D ina  a o  Dim° D I  ,
O a =  b i  +  bp Dimo + b

The a, and bi i n  Eq. (23)  are functions of the internal
coordinates. W e  cannot m ix  even and odd par i ty  com-
ponents. F r o m  the equi lateral  t r iangle case20 in  Ap-
pendix A, w e  are led to choose ao= bo= 0 in the var ia t ion-
al t r i a l  function fo r  the spin- (1 /2)  t r i m e r  ground state.

(23)
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E 3 tx F t  x 7
3

19x6 29x5
Vo 1 1 1(.f _L V 7 9 2 0 + 7920 + 1320

IV. S P I N -(1/2) TRIMER VA R I AT I O N A L CALCULATION

We now construct a t r i a l  function meeting the requ i re -
ments of Sec. I I I .  D. and based on the boson t r i a l  func-
tion Eq. (1) .  W e  are to construct functions Oa and Os,
Eq. (17), sa t i s fy ing  Eqs. (21)  and (22). Gu idance  i s
provided by inspection of the exactly known excited
states of  three par t ic les interact ing through Hooke's
law pa i r  potentials, 14

V(r i i )=  D e r f j / 2  . ( 2 4 )

As is  apparent f rom Eq. (23), t h e r e  i s  some a r b i t r a r i -
ness in  the construction, re f l ec t i ng  the space-quant iza-
tion degeneracy of nonzero angular momentum. W e  take
for the functions

and
= (21 2 2 )

CPaand (Ps
e- a  ( r12"23"31)

1 r ,
vas= V J  L  (2 3 — Z i )  — (Z2 — 2 3 ) ]  ( r  l e r  23473i)

(25)

(26)

With these in  Eq. (17), w e  have a t r i a l  function fo r  the
spin- (1/2)  t r i m e r  that can be rewr i t ten  in  terms of the
functions D01 and 4 . 1  by t ransforming f rom space- f i xed
to body- f ixed axes. 31

Using Eq. (2),  t h e  k inet ic  energy is  found to be

h2 a2 7 7  7 7  x 2
<K)= ( 2 7 )M 1 8   2 8 8  K  V o  •

We again consider the coreless, p a i r  potentials, Eqs .
(10)—(13), take  the expectation value of  the potential en-
ergies with the spin- (1 /2)  t r i a l  function, a d d  in the
kinetic energy Eq. (27) and have as upper bounds on the
ground state energy the fol lowing: f o r  the square well ,

E _  7 7  x 2 3 1  +  +  x6 x5 13x4
FVo -  288 K  L  \ 1 0 8 0  8 0  1 4 4

3
+ +  x  + 3 x  + a - d ;4x 3  2

for  the exponential well,

E  7 7  x 2  ( 2  x 7  5  x 6
Vo  2 8 8  K  T i 7 + 7 7 -  4- 6  ( 1 - T 7

2 x 5  1  x 4  1  x 3  \
+ 3 (1 T i 7 7 /  ;

for  the Yukawa wel l ,

E 7 7  x 2  ( 1  x 7  1   x 6

•

✓ - 9 -  (1.--E.7)6 + 6  ( 1 +  x)5

1 x 5  1  x 4  1  x 3

6 -7 -750  + 6 (1.4x)2-) '

and for  the Gaussian well .

Vo 2 8 8  K  { -  1385 (012
E 7 7  x 2 26 / . \ 1 0

135 2 )

8  + /./ ±r 8  (1: \13+ 3 1 . 1 _  1  ( \ 7
15 \  2) L 1 3 5 2 /  9 2 )  1 8  \ 2 /

3l l
+ ' 1 4  [1— e r f ( 0 1 }

Equations (28)—(31) were analyzed numer ica l ly  as in
the boson case. T h e  upper bounds on the threshold
coupling constants which were found are entered in
Column D of Table I .

V. S P I N -(3/2) TRIMER VA R I AT I O N A L CALCULATION

We discussed the wavefunction of the spin- (3 /2 )  t r i m e r
in general te rms  in Sec. I I I .  C. F o r  an expl ic i t  t r i a l
function we are led, b y  examination of  the excited states
of three Hooke's law osci l la tors,  Eq .  (24),  t o  choose

(xi y3 — x3 +  x2 yi — y 2  + x3 y2 — x2 y3) e-Cr(r12+r23+r31
(32)

in space- f ixed coordinates. W h e n  Eq. (32) i s  t rans-
formed to body- f ixed axes21 the r i g i d  ro to r  function Dloo
appears.

Using Eq. (32),  w e  f ind the kinet ic energy expectation
value i s

( K ) .  —48 h. 2a2 3  x 2—  v  0 .
11  M  1 1  K

(33)

For the coreless potentials, Eqs .  (10)—(13), comb in -
ing the expectation value o f  potential energy using Eq.
(32) wi th Eq. (33) gives upper bounds on the ground state
energy: f o r  the square wel l ,

4 3X x  2 3 x +3x +3)8 e - ]  ;2

for the exponential wel l ,

E
K  1 7 1  ( 1  Tx75 +  11 ( 1  +x)

3 ( x 2 )  7  x 8  1 2  x 7
Vo

10 x 6  4  x 5  \
+ 11 71-7x7 + 11 a -77)

(28) f o r  the Yukawa well ,

E 3  f x 2 \  x 8  2   x 7
Vo -  I C  I  -  - 0 . - 7 +  11 (1+x)6-  —

2  x 6  1  x 5
11 ( 1  + x ) 5  4- 1 1  a  4 7 T Y )

(29) a n d  fo r  the Gaussian wel l ,

(34)

(35)

(36)

E _ 3  (x2 \  8  ( - _ \ "  + 3 2  (x\ '2 1 4  ( . \1 .°
Vo 1 1 \ K  1 4 9 5   2  /  4 9 5  \2 /  1 6 5  2 J

4. 8  55 2 )  3 3  (  4 x2j+ iL 495t  8 (./2/ 2 \ 1 5 . _  4 55 (/-\" + 33 2 (./•2)\11
)  )

(30) —  11 \  ±(2/ )9+ 2  ( 2 /  \ 2 - ) 5 1 1 / 7  er2 / 4 _ erfM1• ( 3 7 )1 \ / J

Equations (33)— (36) were analyzed numer ica l ly  and the
upper bounds on the threshold binding parameters shown
in Column E o f  Table I were found.

(31)

VI. APPRAISAL OF THE VARIAT IONAL
CALCULATIONS: CORELESS POTENTIALS

A. Theorems satisfied

The Hal l—Post lower bound14 on the three-boson
ground state energy gives a lower bound of I  f o r  the
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entries in Column G of Table I I ;  a l l  the entr ies sat isfy
this requirement.

Bruch and Sawada'proved exact values fo r  the thresh-
old coupling constant of  three.bosons would yield en-
t r i es  in Column G of  Table I I  which are less than 1. T h e
entr ies in Column G are upper bounds to the exact values
and for  these models are considerable improvements on
the Bruch—Sawada bound.

The Hal l  lower bound18 for  the spin- (3 /2 )  fermion t r i -
mer re lates the ground state energy to the lowest energy
state of  the two body problem wi th  one unit o f  angular
momentum. I t  gives a lower bound of  T2,- fo r  the entr ies
of Column K. O u r  upper bounds are quite close to th is
lower bound.

The Hal l  lower bound16 fo r  the spin- (1 /2 )  fermion t r i -
mer re lates the ground state energy to two body ground
states of  zero and one unit o f  angular momentum. I t
gives a lower bound of s to the entr ies of  Column H.

B. Conjectures suggested

Our f i r s t  conjecture i s  that the spin- (1 /2 )  t r i m e r  gen-
eral ly  binds before the spin- (3 /2 )  t r i m e r.  T h i s  is  sup-
ported by the entr ies in  Table I  and by inspection of  the
rotational states of  the equi lateral  t r iangle and of three
Hooke's law osci l la tors.  T h e  values in Column D are
smal ler  than the Hal l  lower-bound values K  for the
threshold of the spin- (3 /2)  t r i m e r,  s o  the t r i a l  function
Eqs. (25) and (26) f i r m l y  establ ishes the conjecture fo r
these models.

Our second conjecture i s  that three identical fermions
generally bind before two bind with one unit o f  angular
momentum. I t  appears to us to be the fermion analogy
of the Bruch—Sawada theorem"  for  bosons and is  strong-
ly supported by the entr ies in Columns J and K of Table
II. A s  remarked at the beginning of Sec. I I I ,  the  fact
that the entr ies of  Column K are less than 1 s impl i f ies
the determination that the spin- (3 /2)  t r i m e r  i s  sel f -
bound.

Our resul ts  give no guidance on a th i rd  point. T h e
threshold for  the spin- (1 /2 )  t r i m e r  obtained with Eqs.
(25) and (26) l ies  above the threshold for  a spin singlet
d imer.  S i n c e  we have obtained an upper bound on the
threshold coupling constant and since Hal l ' s  lower
bound16 does not exclude the possib i l i ty,  the  t rue thresh-
old fo r  the se l f -bound t r i m e r  may l ie  below the d imer
threshold; t h i s  would not be an Ef imov state.17 I t  may
be that a  variat ional calculation f o r  the spin- (1 /2)  t r i m e r
with an S state would approach the d imer  threshold more
closely than our P  state calculation does, bu t  our plausi-
b i l i ty  arguments in  Sec. H I  favored the P  state. I n  a
variat ional calculation in S states we would need to com-
pare the t r i m e r  energy wi th the d imer  energy. A b o v e
the d imer  threshold, us ing  the s imple exponential depen-
dences of  Eqs. (25) and (26) would probably not be ade-
quate since in  a var iat ional  calculation of  the d imer
threshold with the t r i a l  function

(r) = e ' r  ( 3 8 )

the threshold coupling constants fo r  the models of Table
I are overestimated by 15%-20%.

C. Discussion

When combined with the lower  bounds, the upper
bounds on the threshold coupling constants f o r  bound
t r ime rs  obtained wi th the elementary t r i a l  functions Eq.
(1), (24),  (25),  and (31) nar rowly  bracket the threshold
coupling constants. F o r  three bosons, the threshold
variat ional resul ts  of  Sitenko and Kharchenko22 fo r  the
square wel l  and of  Humberston, Ha l l ,  and Osborne23 fo r
the exponential and Yukawa wel ls,  obtained wi th more
complex t r i a l  functions, a r e  close to o r  s l ight ly  below
our var iat ional  values.

With our elementary t r i a l  functions for  the coreless
models, mos t  o f  the reduction in  the var iat ional  calcu-
lation could be per formed analyt ical ly.  T h e  resu l ts
show that our method of modifying the boson t r i a l  func-
tion to sat isfy the requirements fo r  fermion t r i a l  func-
tions leads to res t r i c t i ve  var iat ional  bounds on the f e r -
mion t r i m e r  energies.

A Jastrow function has been used in  var iat ional  ca l -
culations on the 4He molecular -boson t r i m e r. 3  W e  now
explore the consequences of  s im i la r  modif icat ions on i t
to construct t r i a l  functions fo r  study of  possible 'He
molecular- fermion t r imers .

VII.  LENNARD-JONES TRIMER

There have been no d i rect  var iat ional  searches fo r
binding of 'He t r i m e r s .  H a l l ' s  fermion t r i m e r  bounds18
have been used, '  though, t o  argue i t  i s  unl ikely that the
'He t r i m e r  is  se l f -bound. I n  th is section, w e  present the
results of  variat ional calculations of  the threshold cou-
pling constant f o r  fermion t r i m e r s  with Lennard-Jones
12-6 pa i r  potentials. T h e  Lennard-Jones 12-6  pa i r
potential wi th the parameters of  deBoer and Michels24
is a fa i r  representation25 of the hel ium pa i r  potential.
We thus obtain a quantitative measure of  how fa r  in the
coupling constant 3He3 is f rom being sel f -bound and see
that a moderate uncertainty in the knowledge of  the phys-
ical coupling constant i s  not l i ke ly  to a l ter  our  conclus-
ions.

The Lennard-Jones 12-6  pa i r  potential i s

V(r) = 4( E(Q/r)12— (a/r)6]

and the coupling constant K  is

K=4Ema2/k2 .

(39)

(40)

With the deBoer—Michels parameters24 fo r  'He, the  value
of K  is 16.6.

We proceed by analogy wi th the coreless potentials of
Secs. I V  and V  and construct the fermion t r i m e r  t r i a l
function f rom a boson t r i m e r  t r i a l  function used pre-
v iously '  in calculations on 4He3. T h e  boson t r i a l  func-
tion i s

111.9= OM ( s )  g5(t) ,  ( 4 1 )

where O W  i s  the solution of

(d2 /d r2 ) [ rO( r ) ]+ (Mm/h2 ) [E -  V( r ) ] [ rO( r ) ]  = 0 , ( 4 2 )

and M  is the var iat ional  parameter.  T h i s  i s  a simple
t r i a l  function, bu t  the values obtained wi th i t  fo r  the
binding of 4He3 have been conf i rmed by a recent inde-
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pendent calculation.26

For the spin- (1 /2 )  t r i m e r  we construct the functions
Oa and Os of  Eq. (18) by analogy wi th Eqs. (25) and (26).
The function 11/2 replaces the product o f  exponentials
[Eq. (1) ]  there.

Simi lar ly  fo r  the spin- (3 /2)  t r i m e r,  we  replace the
product of  exponentials [Eq. (1) ]  in  Eq. (32) by 41B .

For both cases the procedure i s  to choose coupling
constants K  large enough that there i s  binding, evaluate
the variat ional  ground state energy Et, numer ica l ly,  and
then extrapolate to the case of  zero var iat ional  energy.
The extrapolation can be performed in a way that y ie lds
an upper bound on the threshold coupling constant: i n  a
plot of  Ev/E against 1 /K ,  extrapolat ion of  a chord
through two points on the curve to zero energy locates
an upper bound on the threshold K.27

The upper bound on the threshold coupling constant o f
the spin- (3 /2)  t r i m e r  obtained by the extrapolation i s

K(3, 3/2)5. 34. 3 . ( 4 3 )

The smal lest K  value fo r  which binding was found in the
variat ional calculation was 34.4, where Ev/€  = — 7x 10-4.

The upper bound on the threshold coupling constant of
the spin- (1 /2)  t r i m e r  obtained by the extrapolation i s

K(3, 1/2)≤ .  26. 6 .  ( 4 4 )

The smal lest K  value fo r  which binding was found in the
variational calculation was 27, where  Ev =  — 9x 10-4.

Our var iat ional  energies fo r  the Lennard-Jones 12-6
fermion t r i m e r s  for  several  values of  the coupling con-
stant K  are shown in  Table I I I ;  these are the data which
were used for  the extrapolations to  obtain Eqs. (43) and
(44). T h e y  may provide a basis fo r  est imating the bind-
ing energy of  a near- threshold fermion molecular  t r i -

TABLE III. Variat ional energies Et, for
the Lennard-Jones 12-6 Fermion tr imer
as a function of coupling constant K.

K b  ( S  =  2 ) C

40
38
36
35
34.5
34
32
30
28
27

(—Ev/E)a

7.45x10-2
4.77x 10-2
2.10x 10-2
8.3x10-3
2x10-3

(s=1/2)°

7.49x10"2

5.37x10-2
3.38x10-2
1.65 x 10-2
3.5x 10-3
9x 10-4

'Variational energy Et, scaled with the
characteristic energy E of the Lennard-
Jones potential Eq. (49).

'Coupling constant defined in Eq. (49).
'Results for spin-(3/2) t r imer  using trial
function specified in Sec. VII.

°Results for spin-(1/2) tr imer using trial
function specified in Sec. VII .

°No calculation performed for this case.

TABLE IV. Threshold coupling constants
for Lennard-Jones 12-6 tr imers in re-
duced form.

Ratio Upper bound'

K(3, 0)/K(2, 1= 0)
K(3, 1/2)/K(2, / =0)
K(3, 1/2)/K(2, 1=1)
K(3, 3/ 2)/K(2,1=1)

0.93914'
1.19°
0.630°
0.813f

'Obtained with the extrapolation of varia-
tional energies described in Sec. VII.

bBased on an extension of the results of
Ref. 3.

'Compare with Column G of Table II.
°Compare with Column H of Table II.
'Compare with column J of Table II.
(Compare with Column K of Table II.

mer i f  such a system i s  physical ly  realized. R e s u l t s
which may be obtained wi th more detailed var iat ional
calculations could be compared with these values.

We present our  resul ts  fo r  the threshold coupling con-
stants of  the Lennard-Jones t r i m e r s  in reduced fo rm in
Table IV,  f o r  comparison wi th the resu l ts  fo r  the core-
less potentials in  Table I I .  I n  addition to the fermion
t r i m e r  resul ts ,  Eqs .  (43) and (44), we  use a value of
21.0 fo r  an upper bound on the threshold of  the spin-
zero boson t r i m e r,  K(3 ,  0). T h a t  value i s  based on a
slight extension of  the p r i o r  three-boson calculations3
and an extrapolation to zero binding as in  the fermion
cases here.27 I n  scal ing the t r i m e r  coupling constants
we use the threshold coupling constant fo r  a d imer  of
zero angular momentum3

K(2, l=0 )=22 .362  ( 4 5 )

and fo r  a d imer of  one unit o f  angular momentum3

K(2, /  = 1) = 42. 4 .  ( 4 6 )

For the spin- (3 /2 )  t r i m e r,  H a l l ' s  lower bound16 on
K(3,  3/2)  i s  (2/3)(42.2) o r  28.1. T h u s  we concluded
previously3 that the spin- (3 /2 )  t r i m e r  of  3He is  not se l f -
bound. T h e  ra t ios  fo r  the spin- (3 /2)  t r i m e r  threshold
and the boson t r i m e r  threshold in  Table IV  are a l i t t le
la rger  than fo r  the coreless potentials in Table I I .

For the spin- (1 /2 )  t r i m e r,  H a l l ' s  lower bound16 on
K(3, 1/2)  i s  (2/3)(22.362) o r  14.9, wh ich  is  not strong
enough to exclude binding of the spin- 1 / 2  3He t r i m e r.
Our var iat ional  resul t ,  Eq .  (44) ,  i s  fa r  f rom the lower
bound and f rom the 3He value of  K  and unless our t r i a l
function is  ser iously inadequate, the  spin- 1 / 2  3He t r i m e r
is not se l f -bound. W e  f ind that the spin- (1 /2)  t r i m e r
threshold is much c loser to the singlet d imer  threshold
for the Lennard-Jones case, Ta b l e  IV,  than fo r  the
coreless potentials, Ta b l e  I I .

As wi th a l l  var iat ional  calculations, o u r  resul ts  could
be superseded by lower values obtained by the use of
other t r i a l  functions. W e  believe our Lennard-Jones
threshold coupling constants are unl ikely to be shifted
by more than 20% in  such a calculation. T h e  conclusion
would remain that there are no bound 3He t r ime rs .
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VII I .  DISCUSSION

We have shown that a combination of  variat ional ca l -
culations using elementary t r i a l  functions and lower
bound estimates on ground state energies can locate
threshold coupling constants fo r  t r i m e r  se l f -binding to
within narrow ranges.

Our calculations are fo r  three identical par t ic les in -
teract ing via spin-independent centra l  pa i r  potentials.
The three-boson threshold calculations are fo r  a state
of zero spatial  angular momentum and the three- fermion
threshold calculations are f o r  a state of  one unit o f
spatial angular momentum. I t  i s  notable that our var ia -
tional estimates fo r  the spin- (1 /2 )  threshold are ap-
preciably above the threshold fo r  a spin-s inglet  d imer  in
the same pai r  potentials.

The 3He t r i m e r  i s  unl ikely to be se l f -bound. I f  ou r
variat ional bound for  the spin- (1 /2)  t r i m e r  threshold in
the Lennard-Jones 12-6  potential i s  close to the exact
value, the  physical coupling constant o f  3He is  fa r  f rom
the threshold. W e  believe th is  also leaves i t  unl ikely
that the 3He te t ramer  is  se l f -bound.

It remains an open question what the smal lest  se l f -
bound cluster  o f  3He is.

ACKNOWLEDGMENTS

It i s  a great pleasure to acknowledge the fol lowing
assistance: w e  thank Professor  R. N .  H i l l  fo r  helpful
discussions, P ro fesso r  I .  J .  McGee fo r  providing us
with computer programs on which the calculations of
Sec. V I I  were based, and Dr.  J .  M .  Norbeck for  his
cooperation in the operation of  the U. W. Chemis t ry
Department H a r r i s / 7  minicomputer on which several  of
the calculations were done.

APPENDIX A: T H E  RIGID EQUILATERAL TRIANGLE

The wavefunction fo r  three par t ic les in a r ig id  equi la-
tera l  t r iangle configuration provides guidance fo r  the
more general case and can be constructed systematical ly
using the group of  covering operations on the tr iangle.2°

As expl ic i t  representations of the exchange operations,
we use fo r  P12 a rotation about the body- y  axis

Pi2= D ne(0, — 7r, 0) = (— 1 ) ' "  ,  ( A l )

and C123 i s  a rotat ion by W 3  about the body- z  axis.

Ci23 = D 2 7 r / 3 ,  0, 0) = exp(im27r/3) Omni, .  ( A 2 )

I. Spin-(3/2) trimer

Applying P12 f rom Eq. ( A l )  on 4) in  Eq. (17)  with 1=1,
we see that

g =  —g-i

Applying C123 f rom Eq. (A2)  on

g i  exp(i2/r/3)= —g11 •

Together Eqs. (A3)  and (A4) give

g1 =g11=0 i=0

(A3)

in Eq. (17) we get

(A4)

with the resul t  that the 1= 1 state i s

01.= g 10 D1.0(a , 0, y) .

II. Sp in -(1/2) trimer

Applying P12 f rom ( A l )  on 06 in Eq. (23),

P12 b l  b 4

P12 bp = bp ,

P12 b 4  b l

and l ikewise on 4s in Eq. (23),

P12 a1 =  a - i

P12ao=—ao

P12 a 4  = a i  •

(A5)

(A6)

(A7)

P23 and C123 on cba and cps , t reated s im i l a r l y,  g ive  a set
of relat ions that, combined with (A6) and (A7) and the
group relat ion

P12 P23 = C123

allow us to conclude that

b1= /

ao= bo= 0 /

= ia_ i  •

Use of  Eq. (A9)  in Eq. (21) gives for  the 1=1 wavefunc-
tion

(A8)

(I) a= (— iai) Dina + (ia4) D1.4 ,

q5s= al Dina + (Li D1.4

(A9)

(A10)

The r i g id  equi lateral  t r iangle has no internal  degrees
of freedom; Eqs .  (A5)  and (A10) constitute wavefunctions
of the three-pa r t i c le  system in  which the ant isymmetry
requirements are sat isf ied by the angular momentum
wavefunctions. T h e  rotat ional  energies are,  f o r  par t i -
cles of  mass m and tr iangle side length L:  f o r  the spin-
(1/2) t r i m e r,  3g2/2mL,2; and for  the spin- (3 /2)  t r i m e r,
2112/mL2. T h a t  is ,  the  ground state energy is  shifted
from the boson ground s t a t e  by te rms in g2 and the spin-
(1/2) t r i m e r  has lower energy than the spin- (3 /2)  t r i -
mer.
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