Quantum exchange effects in trimer ground states?:
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The ground state of molecular trimers is studied in three dimensions for these pair potential models: the
square well, the exponential, the Yukawa, the Gaussian, and the Lennard-Jones 12-6. Three spin cases
are considered: three spin-zero bosons and the spin-(1/2) and spin-(3/2) states of three spin-(1/2)
fermions. Variational wavefunctions are constructed which satisfy the exchange symmetry requirements for
these cases. Bounds are obtained for the threshold coupling constants at which self-bound trimers occur.

Consequences for possible self-bound trimers of *He are discussed.

I. INTRODUCTION

In quantum mechanics, particles are classed as bo-
sons or fermions and accordingly their states show dif-
ferent symmetries under exchange of particle labels.
The consequences are readily observed even for atoms,
as in the mutual scatterings1 of helium atoms or of neon
atoms. Here we treat exchange effects between such
massive objects near the threshold for three-particle,
or trimer, self-binding.

We study the ground state of three identical particles
in three dimensions interacting via central pair poten-
tials. As models for the pair potential we use the square
well, the exponential well, the Yukawa well, the Gauss-
ian well, - and the Lennard-Jones 12-6 potential. The
first four models are coreless potentials® for which we
have variational wavefunctions for which the energy ex-
pectation value can be reduced analytically and which
locate the threshold coupling constants within narrow
ranges. We use results obtained for these models as
guides in the treatment of the Lennard-Jones model,
which is a useful model for inert gas trimers.

The inert gas trimers for which self-binding is in
doubt® are trimers of the fermion isotope of helium,
He, and we use our results for the Lennard-Jones
model to reinforce an earlier conclusion® that self-
bound ®He trimers are unlikely.

The corresponding question in nuclear physics is on
the occurrence of a bound trineutron?; our treatment
is simpler because in the nuclear case there are signifi-
cant spin-dependent forces to be included.

In Sec. II we present our results for the boson trimer
for the coreless potentials; the Lennard-Jones model
has been treated elsewhere.® In Sec. III we give a
general discussion of the effect of exchange symmetry
requirements on the ground state of the fermion trimer.
Sections IV and V contain the results of variational cal-
culations for the spin-(1/2) and spin-(3/2) fermion trimers
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with coreless potentials. The results of Secs. II, IV,
and V are collected in Tables I and IT and are appraised
in Sec. VI. Then we present our results for the Len-
nard-Jones fermion trimers in Sec. VII and a final dis-
cussion in Sec. VIII. An Appendix is included which con-
tains a review of the group theoretical treatment of the
states of three particles in a rigid equilateral triangle
configuration.

Il. BOSON TRIMER: CORELESS POTENTIALS

Most attempts®®~® at evaluating the ground state energy

of inert gas trimers have used variational methods.
For three spin-zero bosons, the trial wavefunctions
have been of zero total angular momentum’’ and have
usually been of the Jastrow form,

We have found! that for three spin-zero bosons in-
teracting via central coreless pair potentials a useful
variational wavefunction is'?

¥(1, 2, 3)=Nexp[— a(rz+ 7+ 73], (1)

where 7;; are the interparticle distances and N is a nor-
malization constant. The Rayleigh—Ritz expectation val-
ue for this function can be found analytically, the func-
tion has the qualitatively correct exponential behavior

at large interparticle separations, and near the threshold
for self-binding it yields a lower energy than a product
of Gaussians.

We have calculated the expectation value of the kinetic
energy operator

K=-@#¥2m)(Vi+Vi+ v 2)

for three particles of mass m with Eq. (1), using ordi-
nary Cartesian coordinates, and find

(K)Y =(30/7) %%/ m . (3)

The four coreless central pair potential models which
we consider are?

(A) Square well: V (v)= (=V; 7<n (4)
{ 0 =70

(B) Exponential well: V,(»)= - Vyexp(— /%) ; (5)

(C) Yukawa well: V(%)= — Vo2 /) exp(~ #/n) ; (6)

(D) Gaussian well: Vg (7) = - Voexp(- »%/72) . (7)

For all of these we define dimensionless variational
parameters x and coupling constants K by

Copyright © 1977 American Institute of Physics
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TABLE I. Threshold coupling constants for self-binding.
Two body Three body

Pair model® A, K,(1=0) B. K,(=1) c. k=0t b, keo(' 71 )g E K,,,,(z=1 :

e e e - e \s=1/2 © Pe \g=1/2

2
spEzo el % =2.4674%  72=9. 8696" 2.096023 4.077222 7.238101
Exponential 1.446° 7.049° 1.222041 2.373106 5.021898
Yukawa 1. 67982¢ 9.082° 1. 462678 2.834612 6.655844
Gaussian 2.684° 12.100° 2. 247772 4.368196 8.896328

2Models defined in Eqgs. (4)—(7) of text, coupling K defined in Eq. (9).

PFrom analytical solution of the Schrddinger equation.

°From analytical solution in terms of zero of a Bessel function, Ref. 2.

dReferences 2 and 13.

®Values obtained by our numerical solution of the Schrodinger equation.
fUpper bound for three boson threshold, obtained as described in Sec. II.
8Upper bound for spin-(1/2) threshold of three spin-1/2 fermions, obtained as described in

reduced threshold constants which are presented in
Table II and discussed in Sec. VI. Column G is the ratio

Sec. IV.
"Jpper bound for spin-(3/2) threshold of three spin-1/2 fermions, obtained as described in
Sec. V.
x=4aw, (8)
K=mriVo/R%. 9)

Taking the expectation value of the potential energies
with the trial function Eq. (1), adding the kinetic energy
Eq. (3), and using the definitions Eqs. (8) and (9), we
find upper bounds on the ground state energy: for the
square well,

E i 5 x2> '(x* 5% i )-,,_
3V, =56 (? -1+ TR +?+x+1 it (10)

for the exponential well,

B =5 <x2 St ' 2
3V, 56 f(_>_<7 A+ "7 @enf 7 (1+x)3) ?

(11)
for the Yukawa well,

E 5 (x2 x° x? %3 )
ﬁo—= 56 (E)_ <14(1+x)‘l i 7(1+x)° vl 71+ x)? 4
(12)
and for the Gaussian well,

5% % (%) {0 (3 52 ()
_% <§>5 o %(g)a] e [1 —erf(%)]}, (13)

where erf(z)is the error function erf(z) = (2/7* /)2 erEidr, -

For given coupling constant K, the variational en-
ergies were minimized as a function of the parameter
x and the values of K at which the variational energy
first becomes negative were found. Since for each po-
tential the variational energy is an upper bound to the
exact ground state energy, this procedure gives upper
bounds to the threshold coupling constants for self-bind-
ing. We analyzed Egs. (10)-(13) numerically and our
results are entered in Column C of Table I.

Columns A and B of Table I are threshold coupling
constants®® for two-body states of zero and one unit
of angular momentum. They are used in forming the

of Column C to Column A: Hall and Post** proved the
values in Column G must be larger than %; Bruch and
Sawada'® showed that the exact (true) ratios for three
bosons must be less than 1. Column G is an upper bound
on the exact values and represents a considerable im-
provement on the Bruch—Sawada upper bound.

11l. FERMION TRIMER EXCHANGE REQUIREMENTS

We consider trimers composed of three identical
spin-(1/2) particles. As these are fermions and obey
Fermi-Dirac statistics, the total trimer wavefunction
must be antisymmetric under pair exchange and sym-
metric under three-cycle exchanges.

We construct trimer wavefunctions in which the spatial
components have one unit of angular momentum, P
states. It is possible to construct wavefunctions for the
fermion trimer of zero spatial angular momentum but
we have made our variational search for the threshold of
fermion trimer self-binding in P states for several rea-
sons: (1) By analogy with the two-body problem, it is
plausible that the wavefunction nodes required by the
antisymmetry can be introduced with the least increase
of energy by rotational motion rather than by the excita-
tion of relative motion of the particles. (2) In the semi-

TABLE II. Trimer threshold coupling constants in reduced
form.
B C D E D E
; a DI bl D=2 b | e DA o
Pair model P.A G. i II.A I.A J.B K'B
Square well 4.00 0. 849 1,652 2.933 0.413 0.733
Exponential 4. 875 0. 845 1.641 3.473 0.337 0.713
Yukawa 5.407 0.871 1.688 3.962 0.312 0.733
Guassian 4.508 0.838 1.628 3.315 0.361 0.735

2Models defined in Egs. (4)—(7) of text.
bEntries in these columns are ratios of entries in the designated
columns of Table I; for discussion see Sec. VI.
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classical fermion trimers, treated in Appendix A, the
lowest states are P states. (3) For the spin-(3/2) tri-
mer, Hall’s lower-bound comparison problem16 has one
unit of angular momentum. (4) The nuclear physics
model calculations for trineutrons have emphasized P
states. *

The thresholds we find in the trimer P states are be-
low the thresholds for the dimer P states; then a dem-
onstration that the expectation value of the Hamiltonian
is negative relative to the energy of three well-separated
particles is sufficient to establish self-binding of the
three particles. However, the thresholds we find are
above the thresholds for dimer S states, which opens a
question whether the spin-(1/2) trial function we use is
sufficiently general. In S states the trimer calculations
would be more delicate; one would have to establish that
the trimer energy is lower than the dimer energy. For
three bosons, this is established by the Bruch—Sawada
upper bound.® Efimov'’ showed for three bosons that
there are weakly bound trimer states just below the
threshold for dimer binding; he also showed'” these
states do not arise in the mixed symmetry state (S=1/2)
of three identical spin-(1/2) fermions. That is, there
are no Efimov states to prove the spin-(1/2) trimer
threshold is below the dimer threshold and the lowest
spin-(1/2) trimer bound state is likely to be the P state
for the reasons given above. Such questions do not
arise for the spin-(3/2) trimer, where we have located
the threshold between narrow limits.

A. Spin structure

The trimer wavefunction is composed of spatial and
spin parts. If the spins align, the trimer has spin-(3/2)
and the spin representation comes from the spin quartet.
If the spins do not all align, the trimer has spin-(1/2)
and the spin representation comes from each of two pos-
sible spin doublets, hence the reference to the spin-(1/2)
case as the “mixed-symmetry” trimer. One doublet,
X,, can be constructed'® to be symmetric and the other
doublet, X,, to be antisymmetric under the interchange
of particles one and two.

Explicitly, the +1/2 projections of the doublets are
X,(s,=1/2)= (1/V2)(e; B @3 = By @5 @) , (14)
X(s,=1/2)= (1/V6)(2010sB; — 018505 - B1X03) ,
where the a(B) are the usual spin up (down) eigenstates

of a spin-(1/2) particle and the subscripts are the parti-
cle labels.

B. Parity

We require that § be a parity eigenstate, *® i. e

4

Ph=+) . (15)

The effect of parity is only on the spatial orientation of
the triangular configuration of the three particles; the
interparticle distances remain unchanged.

The rigid-rotor wavefunctions!®*® D! .(a, B, ¥), in
which [ is the total angular momentum quantum number,
m is a space-axis projection, and ' is a body-axis
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projection, provide a set of angular momentum states
with parity eigenvalue (- )2 ‘Ian expansion of a
three-particle wavefunction ¢ using these states, the
requirement that i) be a parity eigenstate means that
only even or only odd ' appear. *°

C. Spin-(3/2) trimer

The spin part X of the spin-(3/2) trimer wavefunction
comes from the spin quartet, each member of which is
invariant under three-cycle exchanges and pair ex-

changes. Thus the remaining factors of the wavefunc-
tion must be antisymmetric under pair exchanges. The
wavefunction is factored

P=¢nX, (16)
and expanded

¢
S Dy an)
m’==1

The g!. are functions of the interparticle distances.

We are guided by the special case of the equilateral
triangle® treated in Appendix A to construct a trial
function with /=1 and retaining only the ' =0 com-
ponent. This is a parity eigenstate.

D. Spin-(1/2) trimer

For the mixed-symmetry trimer, we must modify
Egs. (16) and (17) to allow for the construction of ) from
both of the spin doublets, *¢ Eq. (14),

w=¢aXs+¢sXa ; (18)
¢, and ¢ are antisymmetric and symmetric, respec-

tively, under the pair exchange of one and two, so that
Y is antisymmetric under the one—-two exchange.

Applying pair exchange, P;,, and cyclic exchange,
Cy,3, to the spin doublets of Eq. (14) we have

P, X=X,

ClasX,=(<)2 X, + 23X (19)
P X, =-X,,

Ciss X,=-3V3X, -3 X, . (20)

Requiring that 3 in Eq. (18) be antisymmetric under
P, and symmetric under Cy,3 leads to the relations

P12¢a=_¢a;

Cizs o= ()2 pot 3V3 b5 ; (21)
Plz d)s: ¢s )
Ciogps=-3V3 -3 ¢ . (22)

As in the spin-(3/2) case we construct a trial function
with one unit of angular momentum:

(23)

4 1 1 1
¢s=a3 Dy + @y Do+ ay Dpy
i 1 1 1
¢a=01Dpy + by Do+ by Dyiy

The g; and b; in Eq. (23) are functions of the internal
coordinates. We cannot mix even and odd parity com-
ponents. From the equilateral triangle case® in Ap-
pendix A, we are led to choose ay=by=0 in the variation-
al trial function for the spin-(1/2) trimer ground state.

J. Chem. Phys., Vol. 67, No. 4, 15 August 1977
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1V. SPIN-(1/2) TRIMER VARIATIONAL CALCULATION

We now construct a trial function meeting the require-
ments of Sec. III. D. and based on the boson trial func-
tion Eq. (1). We are to construct functions ¢, and ¢,
Eq. (17), satisfying Eqs. (21) and (22). Guidance is
provided by inspection of the exactly known excited
states of three particles interacting through Hooke’s
law pair potentials, **

V(, j)—zk'r,j/z (24)

As is apparent from Eq. (23), there is some arbitrari-
ness in the construction, reflecting the space-quantiza-
tion degeneracy of nonzero angular momentum. We take
for the functions ¢, and ¢,

¢a= (21 = 25) ™ "12"T25*30) (25)
and
1 L
¢s= 75 B T PR Ui U (26)

With these in Eq. (17), we have a trial function for the
spin-(1/2) trimer that can be rewritten in terms of the
functions D}, and D}, by transforming from space-fixed
to body-fixed axes. %

Using Eq. (2), the kinetic energy is found to be

%02 T T x®
== 8~2s &

We again consider the coreless, pair potentials, Eqs.
(10)-(13), take the expectation value of the potential en-
ergies with the spin-(l/ 2) trial function, add in the
kinetic energy Eq. (27) and have as upper bounds on the
ground state energy the following: for the square well,

B _ T £ _[3_<x_“ REANS 22
1080 80 144

27)

X ;
+ % +% %%+ 3x+ 3) e"‘] : (28)

for the exponential well,

ﬁ_ﬂ ﬁ_ 2 %7 _5_ %6
W izEs K \3 @+l (1+x)
Sl T sl B ) . (29
S e R i R R )
for the Yukawa well,
T x (1 e e
288 K “\9 1+x° 76 (1+x)°
1 x°® T 1 53 > .
ol epe S ) IR S

and for the Gaussian well.

SR _‘L(i)lz Ei(&)“’

T =8B K o) 135\2/ T -1136\.2
1 (=Y _fi_(z Wiz f)“ _1_(£>7
s/ | 13N/ g2 /)T 1802

il X 8 32/4 )_C)}

5(5)]\/'1?e 1- erf 3 )¢ (31)

cZ
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Equations (28)-(31) were analyzed numerically as in
the boson case. The upper bounds on the threshold
coupling constants which were found are entered in
Column D of Table I.

V. SPIN-(3/2) TRIMER VARIATIONAL CALCULATION

We discussed the wavefunction of the spin-(3/2) trimer
in general terms in Sec. III.C. For an explicit trial
function we are led, by examination of the excited states
of three Hooke’s law oscillators, Eq. (24), to choose

& = (v1 95— Xg 1 + X2 Y1 — X1 Yo + X3 Yo — X2 93) €~ {T12*723*"s51)
(32)
When Eq. (32) is trans-

in space-fixed coordinates.
the rigid rotor function D(I,0

formed to body-fixed axes®
appears.

Using Eq. (32), we find the kinetic energy expectation
value is

48 riaky 3
(K)= ==
m

2

03

1K Vo . (33)
For the coreless potentials, Eqs. (10)-(13), combin-

ing the expectation value of potential energy using Eq.

(32) with Eq. (33) gives upper bounds on the ground state

energy: for the square well,

i_g_(ﬁ) [3 <x7 19x°% 20x°

Vi LINE 7920 * 7920 * 1320
b geagee ) _]
+8—+2—+T+3x+3 Gl (34)

for the exponential well,

e ) f_?‘_ plhi s 127«
W7y bl K)_ T+ P11 @2

I )
for the Yukawa well,
2 [ (Lo
Vo . INK) T\I1 (@ 2) THL (Th )5
2t T )
A E L PRI (36)

R
L AT
et s s |

Equations (33)-(36) were analyzed numerically and the
upper bounds on the threshold binding parameters shown
in Column E of Table I were found.

37)

VI. APPRAISAL OF THE VARIATIONAL
CALCULATIONS: CORELESS POTENTIALS

A. Theorems satisfied

The Hall-Post lower bound'* on the three-boson
ground state energy gives a lower bound of % for the

J. Chem. Phvs. Vol. 67. No. 4, 15 Auqgust 1977
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entries in Column G of Table II; all the entries satisfy
this requirement.

Bruch and Sawada'® proved exact values for the thresh-
old coupling constant of three.bosons would yield en-
tries in Column G of Table IT which are less than 1. The
entries in Column G are upper bounds to the exact values
and for these models are considerable improvements on
the Bruch-Sawada bound.

The Hall lower bound'® for the spin-(3/2) fermion tri-
mer relates the ground state energy to the lowest energy
state of the two body problem with one unit of angular
momentum. It gives a lower bound of % for the entries
of Column K. Our upper bounds are quite close to this
lower bound.

The Hall lower bound'® for the spin-(1/2) fermion tri-
mer relates the ground state energy to two body ground
states of zero and one unit of angular momentum. It
gives a lower bound of % to the entries of Column H.

B. Conjectures suggested

Our first conjecture is that the spin-(1/2) trimer gen-
erally binds before the spin-(3/2) trimer. This is sup-
ported by the entries in Table I and by inspection of the
rotational states of the equilateral triangle and of three
Hooke’s law oscillators. The values in Column D are
smaller than the Hall lower-bound values K for the
threshold of the spin-(3/2) trimer, so the trial function
Eqgs. (25) and (26) firmly establishes the conjecture for
these models.

Our second conjecture is that three identical fermions
generally bind before two bind with one unit of angular
momentum. It appears to us to be the fermion analogy
of the Bruch—Sawada theorem'® for bosons and is strong-
ly supported by the entries in Columns J and K of Table
II. As remarked at the beginning of Sec. III, the fact-
that the entries of Column K are less than 1 simplifies
the determination that the spin-(3/2) trimer is self-
bound.

Our results give no guidance on a third point. The
threshold for the spin-(1/2) trimer obtained with Eqs.
(25) and (26) lies above the threshold for a spin singlet
dimer. Since we have obtained an upper bound on the
threshold coupling constant and since Hall’s lower
bound'® does not exclude the possibility, the true thresh-
old for the self-bound trimer may lie below the dimer
threshold; this would not be an Efimov state.'” It may
be that a variational calculation for the spin-(1/2) trimer
with an S state would approach the dimer threshold more
closely than our P state calculation does, but our plausi-
bility arguments in Sec. III favored the P state. Tn a
variational calculation in S states we would need to com-
pare the trimer energy with the dimer energy. Above
the dimer threshold, using the simple exponential depen-
dences of Egs. (25) and (26) would probably not be ade-
quate since in a variational calculation of the dimer
threshold with the trial function

p(r)=e" (38)

the threshold coupling constants for the models of Table
I are overestimated by 15%-20%.

Cramer, Bruch, and Cabral: Trimer ground states

C. Discussion

When combined with the lower bounds, the upper
bounds on the threshold coupling constants for bound
trimers obtained with the elementary trial functions Eq.
(1), (24), (25), and (31) narrowly bracket the threshold
coupling constants. For three bosons, the threshold
variational results of Sitenko and Kharchenko?® for the
square well and of Humberston, Hall, and Osborne? for
the exponential and Yukawa wells, obtained with more
complex trial functions, are close to or slightly below
our variational values.

With our elementary trial functions for the coreless
models, most of the reduction in the variational calcu-
lation could be performed analytically. The results
show that our method of modifying the boson trial func-
tion to satisfy the requirements for fermion trial func-
tions leads to restrictive variational bounds on the fer-
mion trimer energies.

A Jastrow function has been used in variational cal-
culations on the *He molecular-boson trimer.® We now
explore the consequences of similar modifications on it
to construct trial functions for study of possible *He
molecular-fermion trimers.

VIl. LENNARD-JONES TRIMER

There have been no direct variational searches for
binding of *He trimers. Hall’s fermion trimer bounds*®
have been used, 3 though, to argue it is unlikely that the
®He trimer is self-bound. In this section, we present the
results of variational calculations of the threshold cou-
pling constant for fermion trimers with Lennard-Jones
12-6 pair potentials. The Lennard-Jones 12—6 pair
potential with the parameters of deBoer and Michels®
is a fair representation®® of the helium pair potential.
We thus obtain a quantitative measure of how far in the
coupling constant *He; is from being self-bound and see
that a moderate uncertainty in the knowledge of the phys-
ical coupling constant is not likely to alter our conclus-
ions.

The Lennard-Jones 12—-6 pair potential is

V@r)=4e[(o/r)- (0/7)] , (39)
and the coupling constant K is
K=4emo®/n? . (40)

With the deBoer-Michels parameters® for *He, the value
of K is 16.6.

We proceed by analogy with the coreless potentials of
Secs. IV and V and construct the fermion trimer trial
function from a boson trimer trial function used pre-
viously® in calculations on ‘He;. The boson trial func-
tion is

Yp=00)o(s) o) ,
where ¢(7) is the solution of
@?/ar*ro @)+ Mm/mE-v)llre@)]=0, (42)

and M is the variational parameter. This is a simple
trial function, but the values obtained with it for the
binding of ‘He, have been confirmed by a recent inde-

(41)
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pendent calculation, 2

For the spin-(1/2) trimer we construct the functions
¢, and ¢, of Eq. (18) by analogy with Eqs. (25) and (26).
The function ¥, replaces the product of exponentials
[Eq. (1)] there.

Similarly for the spin-(3/2) trimer, we replace the
product of exponentials [Eq. (1)] in Eq. (32) by ¥,

For both cases the procedure is to choose coupling
constants K large enough that there is binding, evaluate
the variational ground state energy E, numerically, and
then extrapolate to the case of zero variational energy.
The extrapolation can be performed in a way that yields
an upper bound on the threshold coupling constant: in a
plot of E, /e against 1/K, extrapolation of a chord
through two points on the curve to zero energy locates
an upper bound on the threshold K. %’

The upper bound on the threshold coupling constant of
the spin-(3/2) trimer obtained by the extrapolation is

K(3, 3/2)=34.3 . (43)

The smallest K value for which binding was found in the

variational calculation was 34.4, where E,/e=—-7X10",

The upper bound on the threshold coupling constant of
the spin-(1/2) trimer obtained by the extrapolation is

K(3,1/2)<26.6 . (44)

The smallest K value for which binding was found in the
variational calculation was 27, where E, /e =— 9x 10™,

Our variational energies for the Lennard-Jones 12-6
fermion trimers for several values of the coupling con-
stant K are shown in Table III; these are the data which
were used for the extrapolations to obtain Eqs. (43) and
(44). They may provide a basis for estimating the bind-
ing energy of a near-threshold fermion molecular tri-

TABLE III. Variational energies E, for
the Lennard-Jones 12—6 Fermion trimer
as a function of coupling constant K,

(-E /)
K® (s=3/2)° (s=1/2)4
40 SN 155105 cee®
38 4.77%107 veet
36 2.10% 107 7.49%x107°
35 83 X110 ceet
34.5 9007 cent
34 cee® 5,37%1072
32 .© 3.38%107°
30 . 1.65%x 107
28 . 3.5x107°
27 .e 9x10™

#Variational energy E, scaled with the
characteristic energy € of the Lennard-
Jones potential Eq. (49).

bCoupling constant defined in Eq. (49).
°Results for spin-(3/2) trimer using trial
function specified in Sec. VII.

dResults for spin-(1/2) trimer using trial
function specified in Sec. VII.

®No calculation performed for this case.

TABLE IV. Threshold coupling constants
for Lennard-Jones 12—6 trimers in re-
duced form.

Ratio Upper bound?®
K(3,0)/K(2,1=0) 0.939%¢
K(3,1/2)/K(2,1=0) 1.19¢
K(3,1/2)/K(2,1=1) 0.630°
K(3,3/2)/K(2,1=1) 0.813!

20Obtained with the extrapolation of varia-
tional energies described in Sec. VII.
bBased on an extension of the results of
Ref. 3.

¢Compare with Column G of Table II.
9Compare with Column H of Table II.
®Compare with column J of Table II.
fCompare with Column K of Table II.

mer if such a system is physically realized. Results
which may be obtained with more detailed variational
calculations could be compared with these values.

We present our results for the threshold coupling con-
stants of the Lennard-Jones trimers in reduced form in
Table IV, for comparison with the results for the core-
less potentials in Table II. In addition to the fermion
trimer results, Eqs. (43) and (44), we use a value of
21.0 for an upper bound on the threshold of the spin-
zero boson trimer, K(3, 0). That value is based on a
slight extension of the prior three-boson calculations®
and an extrapolation to zero binding as in the fermion
cases here.?” In scaling the trimer coupling constants
we use the threshold couplmg constant for a dimer of
zero angular momentum?®

K(2,1=0)=22,362 . (45)
and for a dimer of one unit of angular momentum?®
K(2,1=1)=42.4 . (46)

For the spin-(3/2) trimer, Hall’s lower bound® on
K(3, 3/2) is (2/3)(42.2) or 28.1. Thus we concluded
previously® that the spin-(3/2) trimer of *He is not self-
bound. The ratios for the spin-(3/2) trimer threshold
and the boson trimer threshold in Table IV are a little
larger than for the coreless potentials in Table II.

For the spin-(1/2) trimer, Hall’s lower bound'® on
K(3, 1/2) is (2/3)(22.362) or 14.9, which is not strong
enough to exclude binding of the spin-1/2 *He trimer.
Our variational result, Eq. (44), is far from the lower
bound and from the *He value of K and unless our trial
function is seriously inadequate, the spin-1/2 3He trimer
is not self-bound. We find that the spin-(1/2) trimer
threshold is much closer to the singlet dimer threshold
for the Lennard-Jones case, Table IV, than for the
coreless potentials, Table II.

As with all variational calculations, our results could
be superseded by lower values obtained by the use of
other trial functions. We believe our Lennard-Jones
threshold coupling constants are unlikely to be shifted
by more than 20% in such a calculation. The conclusion
would remain that there are no bound *He trimers.
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VIll. DISCUSSION

We have shown that a combination of variational cal-
culations using elementary trial functions and lower
bound estimates on ground state energies can locate
threshold coupling constants for trimer self-binding to
within narrow ranges.

Our calculations are for three identical particles in-
teracting via spin-independent central pair potentials.
The three-boson threshold calculations are for a state
of zero spatial angular momentum and the three-fermion
threshold calculations are for a state of one unit of
spatial angular momentum. It is notable that our varia-
tional estimates for the spin-(1/2) threshold are ap-
preciably above the threshold for a spin-singlet dimer in
the same pair potentials.

The *He trimer is unlikely to be self-bound. If our
variational bound for the spin-(1/2) trimer threshold in
the Lennard-Jones 12-6 potential is close to the exact
value, the physical coupling constant of *He is far from
the threshold. We believe this also leaves it unlikely
that the *He tetramer is self-bound.

It remains an open question what the smallest self-
bound cluster of *He is.
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APPENDIX A: THE RIGID EQUILATERAL TRIANGLE

The wavefunction for three particles in a rigid equila-
teral triangle configuration provides guidance for the
more general case and can be constructed systematically
using the group of covering operations on the triangle. 2

As explicit representations of the exchange operations,
we use for P, a rotation about the body-y axis

P12=D:nm'(0’ =T, 0)= (— 1),*m6-mm' ’ (Al)
and C,,, is a rotation by 27/3 about the body-z axis.
C123=D e (= 2/3, 0, 0) = exp(im27/3) 6 e - (A2)

. Spin-(3/2) trimer

Applying P, from Eq. (Al) on ¢ in Eq. (17) with =1,
we see that

gi = —gtl . (A3)
Applying Cy,s from Eq. (A2) on ¢ in Eq. (17) we get
g1expen/3)=-g . (A4)

Together Eqs. (A3) and (A4) give

g}=g21=0 )
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with the result that the /=1 state is
¢t,,=géDi,.o(a, B, Y) .
1l. Spin-(1/2) trimer

(A5)

Applying Py, from (A1) on ¢, in Eq. (23),
Pyyby=—0b, ,
Py b9=bg ,
Pipba=-b1,

(A6)

and likewise on ¢, in Eq. (23),
Ppa=ay ,
Py ag=-ap , (A7)
Pip,a =ay .

Py3 and Cyp; On ¢, and ¢, , treated similarly, give a set
of relations that, combined with (A6) and (A7) and the
group relation

Pyp Pp3=Cigs (A8)
allow us to conclude that

bi=-iay ,

ag=by=0, (A9)

ba=ia, .

Use of Eq. (A9) in Eq. (21) gives for the /=1 wavefunc-
tion :

$o=(=ia) Dl +(ia.) Dy (A10)
¢y= Doy ray Doy .

The rigid equilateral triangle has no internal degrees
of freedom; Eqs. (A5) and (A10) constitute wavefunctions
of the three-particle system in which the antisymmetry
requirements are satisfied by the angular momentum
wavefunctions. The rotational energies are, for parti-
cles of mass m and triangle side length L: for the spin-
(1/2) trimer, 37%2/2mL?, and for the spin-(3/2) trimer,
27%/mL?. That is, the ground state energy is shifted
from the boson ground state® by terms in 72 and the spin-
(1/2) trimer has lower energy than the spin-(3/2) tri-
mer.
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