
Implementing Advanced Artificial Intelligence Concepts in Ada: 
 

A Case Study of a Prototype Expert System for a 
Real-Time Electronic Warfare Application 

 
Joan Hardy, U.S. Army CECOM Center for EW/RSTA, 

Joseph W. Croghan and Myron L. Cramer, Booz, Allen & Hamilton Inc. 
 
 
1.0 Introduction 
 
 The application described in this paper arose from an 
effort to develop an Expert Power Management System 
(EPMS) for use with an advanced concept radar jamming 
system.  This program required the merging of expert system 
technologies, Ada® software design, advanced Electronic 
Warfare (EW) concepts, and real-time software design 
concepts.  This paper reports how these different areas have 
been merged within the constraints of an advanced concept 
demonstration program. 
 
 A power management system controls the distribution of 
electromagnetic transmissions from an electronic jamming 
system used to defeat threat radar systems.  Against multiple 
threat radars, the power management system must identify 
and prioritize threat emitters, decide which emitters to jam, 
and must select effective jamming techniques for designated 
targets.  Available jamming power must be shared among 
assigned jamming techniques considering frequency, timing, 
and technique waveforms. 
 
1.1 Project Goals 
 
 The project was structured to address several areas, 
corresponding to project goals.  These were to:  (1) validate 
the use of an expert system for use as a power management 
system, (2) include provisions for parallel processing 
implementations, (3) develop EPMS software in Ada, (4) 
provide the Army with a usable demonstration, and (5) 
provide a flexible design architecture that can be adapted to 
many different subsequent implementations. 
 
1.2 Development Effort 
 
 The EPMS development employed an Expert System 
Shell, CLIPS.  This shell was a key element in our approach 
in that it provided a validated off-the-shelf artificial 
intelligence product, designed for easy programming language 
interface.  The CLIPS Ada implementation combined with the 
employment of Ada for the other portions of the software 
results in a development that retains exceptional 
transportability.  Since EPMS is an advanced concept 
demonstration program and can impact other advanced 
concept programs, the ultimate hardware implementations is 
yet to be determined.   Accordingly, transportability of 
software development is essential. 
 
 The development project consisted of several tasks: (1) 
determination and documentation of functional requirements, 
(2) design and development of knowledge base, (3) design and 

development of demonstration system software, and (4) 
testing of concept. 
 
2.0 Knowledge Base System Requirements 
 
 In order to effectively demonstrate the Expert Power 
Management System, a support environment, consisting of  
an environment simulation, a simulation of threat systems, a 
user interface and a flight path simulation was developed.  
One design goal was to structure the system so that the 
majority of the technical effort could be spent on the Expert 
Power Management System.  This section outlines that 
design and the design tools used. 
 
2.1 Top Level Demonstration System Design 
 
 EPMS is envisioned as an executive control unit to 
provide a higher level of control for the advanced radar 
jamming system based upon a higher level of situational 
awareness resulting from (1) integration with other Aircraft 
Survivability Equipment (ASE), (2) interfaces with aircraft 
avionics, (3) advanced decision logic to optimize resource 
utilization against multiple threats. 
 
 As noted above, the demonstration system contains five 
subsystems: the Expert Power Management System, the User 
Interface, the Environment Simulation, the Adversary 
Doctrine, and the Flight Path Simulation.  In addition to 
these software subsystems there is a set of databases that are 
used by the software.  The relationships of these software 
modules and databases are shown in figure 1, along with the 
data flows between the modules. 
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 Each of these components plays an important role in the 
system operation.  The Environment Simulation maintains 
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data about events and objects external to the aircraft; this 
includes primarily threat radars and systems.  The Adversary 
Doctrine module uses data from this simulation to control the 
actions of the threat radars and and systems.  The Flight 
Path Simulation maintains data on aircraft-related events 
and objects, including avionics data, the receiver data and the 
jammer information.  The Expert Power Management System 
uses data from the Flight Path Simulation, as well as 
environment data to control the actions of the aircraft's 
jammers and receivers.  Finally, the User Interface displays 
the critical information from the other system components as 
well as providing a mechanism for user input and control of 
the system.  
 
 Since the primary purpose of this effort is to develop an 
Expert Power Management System, the development of this 
module was undertaken first.  The following section describes 
the issues involved in the Expert Power Management System 
requirements analysis and design. 
 
2.2 Expert System Requirements 
 
 The requirement for the EPMS is to specify expert 
knowledge about the effective use of  radar jamming 
equipment as a knowledge base, such that the knowledge may 
be used to automatically manage the use of that equipment.  
The advantage of an expert system is its ability to apply 
diverse, largely unstructured knowledge to a problem.  The 
problem to be addressed by the EPMS is made up of such 
knowledge.  The EPMS must balance mission, flight context 
(friendly and opposition forces and actual location, terrain, 
etc.), equipment condition and availability, and the actual 
threats that must be countered. 
 
 The major aspect of the problem is resource allocation.  A 
number of threats must be countered as effectively as possible 
with a limited amount of equipment and power.  This type of 
problem is amenable to a number of solutions, including 
linear programming as well as expert systems.  Complicating 
this issue, however, are a host of constraints that must be 
taken into consideration.  Traveling wave tubes must not be 
allowed to overheat.  Jamming techniques must not be 
allowed to inadvertently draw friendly units under fire.  
Threats must be addressed according to a set of priorities.  
Transmitters can only operate over certain bandwidths, and 
must be applied to threats in an appropriate manner.  These 
issues must be addressed in concert with the basic resource 
allocation problem, in a coherent and efficient manner. 
 
 The total problem is sufficiently complex to require non-
conventional algorithms.  Moreover, it is of a form that lends 
itself to an expert systems approach.  The implementation 
will represent the knowledge of experts in the field of 
electronic warfare, providing an electronic expert, EPMS, 
capable of reacting swifter than any human expert. 
 
 Many expert systems are built using expert system 
shells.  These are software tools designed to support the 
construction and/or execution of expert system software.  In 
some systems, the shell is the equivalent of a language 
interpreter and the entire expert system is written in the 
shell "language."  In other cases the shell represents only a 
portion of the finished system.  This may take the form of an 
embedded shell kernel within the system, or the shell may 
generate source code for the expert system that will be 
compiled by the same compiler used for the finished product. 
 
 Typically expert system shells provide a high-level 
language to represent "rules".  Similar in form to a 
conventional programming language if..then construct, a rule 
specifies a set of conditions to which it applies and a set of 
actions to be accomplished when the conditions are met.  
Unlike its conventional cousin, a rule is conceptually a 

parallel construct, evaluated along with other rules against 
current context and not a part of a sequential process or 
decision tree. 
 
 Rules lend themselves to processes involving unrelated, 
specific actions to be taken in particular situations.  The 
EPMS problem presents a series of special cases and 
techniques that must be used only when certain conditions 
are true.  The conditions, in this problem, are elements such 
as the location of friendly and opposition units, the status of 
onboard equipment, the current threat environment and the 
current mission and mission status.  The rules represent the 
relationship between a perceived opposition unit and its 
threat, the relationship between the operation of equipment 
and its future utility, the probability of particular techniques 
being effective against threats, and the requirements of the 
mission. 
 
 In some cases, the use of rules is not sufficient to a 
particular problem, and other techniques must be used.  
Depending upon the shell, this may require representation of 
the technique using rules, extension of shell capability, or 
special software developed for the particular technique.  One 
example of such a technique would be the use of constraint 
propagation networks to represent the relationship between 
power demand, available power, and the degeneration of 
equipment such as the traveling wave tubes (TWT) due to 
overuse.  Another way to approach the overheating of TWTs 
might be the use of temporal logic to specify the relationship 
between equipment usage and equipment availability.  The 
first technique would require special code to be developed in 
the expert system shell while the second technique would 
lend itself to rule specification. 
 
 Hardware hosting EPMS will change over time, as a 
result of its advanced concept stage.  Three versions of the 
EPMS processors are envisioned at this stage:  the 
development system, an operational system, and an 
alternative version of the operational system using a parallel 
architecture. 
 
 The development hardware was a conventional 
microcomputer, an 80386 MS-DOS microcomputer.  By using 
a conventional machine, the full range of tools and utilities 
available under MS-DOS were used to increase productivity.  
Additionally, development on an MS-DOS compatible 
machine has facilitated hosting the demonstration model on 
similar machines. 
 
 The actual configuration of the operational hardware is 
open.  The assumption at this point is that a general-purpose 
microcomputer will be used.  The basic requirement is that it 
be a target for some Ada cross-compiler, so that the EPMS 
code may be ported to it at the appropriate time. 
 
 Apart from selecting the actual processor used for the 
EPMS, interface with EW system hardware will be required.  
The EPMS software will be carefully modularized to avoid 
contaminating general-purpose code with implementation-
specific issues.  As a general rule, it is assumed that 
communication between the EPMS and other EW and avionic 
systems will be via  data buses.  The details of these bus 
designs are left for future development. 
 
 The major requirement for any real-time embedded 
system is performance.  One method of providing a high-
performance system is to employ multiple processors to share 
the processing load. 
 
 The use of any parallel processing architecture affects 
the structure of software.  These were considered in 
developing the EPMS functional design and in grouping and 
apportioning processes. 
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2.3 Provisions for Parallel Processing 
 
 In developing the design for EPMS, provisions were 
included for future parallel processing implementations.  
These provisions began with the initial partitioning of system 
functional requirements.  The resulting breakout of the 
EPMS design included separate functional elements for (1) 
the Expert System, (2) the Input/Output (I/O) Processor, (3) 
Receiver Manager, (4) Jammer Manager, and (5) the Tracker.  
The objective of these partitions of the processing work load is 
to unburden the Expert System as much as possible from 
routine activities that might otherwise distract it from 
situation analysis and decision making responsibilities in a 
real-time environment. 
 
  The I/O Processor will handle incoming and outgoing 
communications between EPMS and the other EW and 
avionics systems.  This element attends to the communication 
requirements of the on-board data busses, forwarding 
commands and receiving data reports. 
 
 The Receiver Manager supervises the use of the 
available receiver assets, issues measurement commands as 
directed to by the Expert System and handles status 
reporting from these receivers. 
 
 The Jammer Manager controls the use of the available 
jammers, issues jamming assignments as directed by the 
Expert System. 
 
 The Tracker conducts mathematical calculations in 
support of jamming activities as assigned by the Expert 
System. 
 
2.4 Other Software Components 
 
 The other four software modules in the demonstration 
system were designed in such a way that is compatible with 
the Expert Power Management System, however since these 
other components constitute a support  environment in which 
to operate the Power Management System, they are not 
intended for use in the objective EPMS system.  This means 
that some of the constraints about development languages or 
run-time speed are less important.  After careful examination, 
it was determined that developing all software components in 
the same language would be beneficial.  This would allow 
increased portability and less development overhead.  Since it 
is not usually difficult to integrate expert system shells with 
the language the shell is written in, it was decided that it 
would be acceptable to create some modules in Ada and 
others in a shell written in Ada, such as CLIPS.  
 
3.0 Software Development 
 
 In order to effectively develop software for the Expert 
Power Management System and the support environment, an 
appropriate development environment was chosen.  This 
section outlines the development environment options and the 
configuration chosen for this application. 
 
3.1 Software Design Tools and Methodology 
 
 A challenging part of the EPMS development effort was 
selecting a software design that met the constraints of the 
software development resources and satisfied the technical 
requirements of the EPMS.  
 
 It was an objective to have a design tool that could be 
easily used by all of the people involved, software developer 
and subject matter experts, so that the design could be easily 
revised.  Natural Architect Workstation by Software AG was 
selected.  This packages allows the rapid development of data 

flow and control flow diagrams, as well as building a data 
dictionary from the diagrams.  Figure 1 of this paper was 
created using Natural Architect Workstation.  With this tool, 
the design was easily revised and the results of design 
meetings quickly documented.  In fact, some design meetings 
actually took place in front of the computer and the changes 
were made immediately.  
 
3.2 Development Environment Options  
 
 Traditionally, expert systems have been constructed 
using flexible languages embedded in high-productivity 
development environments.  Special-purpose hardware and 
software supported rapid prototyping and high quality 
graphics-based user interfaces.  More recently, as expert 
system technology has advanced and applied more and more 
to real-world issues, it has been necessary to move from these 
special-purpose development environments to more generic 
ones. 
 
 EPMS is a prototype of a real-time embedded system.  In 
the late 1970's an effort was initiated to develop a language 
for just this type of system, resulting in the Ada programming 
language.  Recognizing the need for language elements 
dedicated to embedded systems, the language designers 
provided mechanisms for multi-tasking (either time-sliced or 
true parallelism), interrupt-driven code, and direct hardware 
access. 
 
 The driving factor behind the development of the 
language, however, was the proliferation of languages and 
development environments.  To this end, Ada compilers must 
be validated against strict criteria before they are allowed to 
bear the name "Ada," which has been trademarked by the 
Department of Defense.  The benefit to this project is that the 
language is standard, providing a stable base on which to 
build the EPMS.  Since the final hardware configuration is 
still open, the choice of a standard language is of utmost 
importance. 
 
 The implementation of an expert system in Ada might be 
accomplished on a number of levels:  using an expert system 
shell written in Ada, using a set of library functions in Ada,  
generating Ada code from expert system constructs, or hard-
coding expert system algorithms in Ada by hand. 
 
 Using an expert system shell written in Ada 
provides the benefits of the expert system shell while 
providing the portability and other benefits of Ada.  The 
implementation of the expert system shell may be done 
consistent with accepted Ada programming style.  One 
potential drawback is that the shell may not provide all 
of the necessary functionality or performance for a 
particular project, requiring changes or extensions to the 
shell.  Thus source code, or some usable mechanism for 
extending the shell, is desirable.  One such shell, CLIPS, 
is described in more detail in Section 3.2. 
 
 Using a set of library functions in Ada provide the 
benefit of rapid development, while maintaining the 
speed and flexibility of Ada.  A typical place where this is 
employed is the Graphical Kernel System (GKS), used 
for user interface building.  By using this system, a user 
interface can be rapidly generated in Ada.  GKS is 
described in more detail in Section 3.3. 
 
 Generating Ada code from expert system constructs 
is a compromise between the first positions.  These 
constructs (rules, constraint networks, etc) would be 
specified as if for a shell.  In some cases, a shell would be 
used to test the constructs interactively.  When 
necessary, the constructs would be translated into Ada, 
allowing them to be compiled and executed at the speed 
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of compiled programs.  This approach provides some of 
the advantages of the shell approach and eliminates 
some of the disadvantages.  Unfortunately, many of the 
disadvantages of the translation would also be 
introduced. 
 
 Hard-coding expert system algorithms in Ada by 
hand may well be the method most in the spirit of the 
language.   As  support for reusable code modules 
provides libraries of expert system algorithms and data 
structures, this option will become more prevalent.   
However, at the current time the expense associated 
with building an expert system from scratch would 
preclude any type of prototype and iterate development 
methodology. 
 
 Requirements dictate the fastest system, but contractual 
constraints of an advanced concept program prohibited 
spending too much time developing custom tools for this 
project.  Moreover, the choice of tools already developed and 
available is very small, due to inertia on the part of the 
artificial intelligence community with respect to Ada. In order 
to develop an effective expert system, some combination of the 
above approaches may be required in similar programs.  This 
will allow other developers to capitalize on the advantages of 
some of the approaches in situations where the disadvantages 
are not significant.  
 
3.3 C Language Integrated Production System 

(CLIPS) 
 
 The Artificial Intelligence Section (AIS) at 
NASA/Johnson Space Center (JSC) has encountered a 
number of problems delivering LISP-based expert systems to 
NASA users.  Three problems were especially detrimental to 
the use of expert systems within NASA: low availability of 
LISP on most computers, high cost of specialized LISP tools 
and hardware, and poor integration of LISP with other 
languages.  These factors all made embedded applications 
difficult. 
 
 To solve these problems, the NASA/AIS developed an 
expert system tool written in and fully integrated with the C 
language: the "C" Language Production System (CLIPS).  
CLIPS was designed specifically to provide high portability, 
low cost, and easy integration with external systems.  CLIPS 
is also available in the Ada language, and as with C the Ada 
version is easy to integrate with external Ada programs. The 
primary representation methodology in CLIPS is a forward 
chaining rule language based on the Rete Algorithm.  CLIPS 
provides reasonable performance on a wide variety of 
computers.  It also includes tools for debugging.  CLIPS in in 
use a most NASA centers, numerous universities, and many 
places in private industry.  It is available at a low cost 
through NASA. 
 
 Ada-CLIPS is an expert system shell descended 
originally from Inference Corporation's ART™.  The Ada 
version of CLIPS was converted from the C version of CLIPS, 
which was based loosely on the concepts embodied in ART.  
CLIPS provides a fairly rich expert system development 
environment, primarily based around a forward-chaining 
inference mechanism which uses the Rete Algorithm.  This is 
a very traditional expert system environment.  Source code is 
provided with the system and instructions are provided for 
extending it to handle additional functionality.  
 
3.4 CLIPS Development Environment 
 
 In applying CLIPS, an application developer encodes 
domain rules in CLIPS syntax.  This syntax is fairly easy to 
learn and provides immediate results that can be evaluated 
for accuracy.  While the encoding of the rules is simple, the 

flow of control in a rule based system is usually difficult to 
predict, since CLIPS decides the best order in which to fire 
the rules.  Some time can easily be spent attempting to 
determine why a particular rule is not firing at the expected 
time, or why it is firing when it was not expected.  CLIPS 
provides some debugging tools to help work these issues. 
 
 On the PC the Ada version of CLIPS offers a 
conventional development environment.  CLIPS commands 
are interpreted from a command-line interface.  For example: 
to see facts, the command "(facts)" is entered; to view the rule 
agenda, the command "(rule agenda)" is entered.  Other 
development features are invoked similarly.  CLIPS allows for 
loading predefined files, facilitating development.  The "C" 
language version of CLIPS provides additional development 
support for both the PC and the Macintosh implementations.  
Both of these versions support a window system that can 
show the facts list, the agenda and rules as changes occur 
during a run.  In order to utilize these enhanced environment 
features, we tested the method of generating CLIPS code 
using one of the "C" versions and then running this code 
under the Ada version of CLIPS.  We found that this method 
worked well, although there are some minor incompatibilities 
among the three versions.   
 
3.5 CLIPS Execution Environment 
 
 The CLIPS rule bases can be either executed directly 
using the CLIPS interpreter or called from an Ada function.  
In the case of this project, CLIPS is called from an Ada 
function, namely, the User Interface.  The executable for the 
software is an Ada executable, this function sets up the user 
interface and calls CLIPS.  CLIPS then runs, firing all 
appropriate rules, and makes periodic calls back to the Ada 
function in order to update the user interface.  When the user 
gives input to the interface, that data is passed to CLIPS.  
There is no operational difference between this method of 
operation and starting the CLIPS interpreter, loading the 
appropriate files and running the rules base from there.  In 
the application described in this paper, Ada was chosen to 
control the processing since User Interface is the top level 
function for the demonstration system. 
 
3.6 Graphics Kernel System (GKS) 
 
 The main purpose of the Graphical Kernel System is the 
production and manipulation of graphics information.  These 
graphics can vary from simple line graphics to images in grey 
scale or color.  GKS allows programs to support a wide variety 
of graphics devices and is defined independently of 
programming languages and was adopted as an International 
Standard by ISO in 1985 for computer graphics.  By using a 
library of grahics functions and a set of bindings appropriate 
for the development language, a programmer can use GKS 
from many different languages. For the EPMS demonstration, 
the Ada implementation was used. 
 
 GKS allows a programmer to develop a graphical 
interface much more rapidly than could be done from scratch.  
The advantage of using GKS over another system is its 
portability and maintainability resulting from the strict 
standards of GKS. 
 
3.7 Completing the Development Environment 
 
 Selecting a development environment involved two 
primary decision criteria: the flexibility to model the 
necessary constructs; and ease of software development and 
modification.  Many times these two criteria are mutually 
exclusive.  As a particular development environment provides 
an increasing set of predefined functions and features it 
facilitates the development and modification of software, 
however, it may also become difficult to represent very 
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specific constructs since the environment is less flexible.  It is 
particularly important to be able to develop and modify 
software quickly to facilitate the development of the EPMS 
prototype.  Rapid iteration cycles with the domain experts are 
critical to system success.   
 
 A secondary decision criteria, system speed is not as 
important as those criteria listed above since many parts of 
the demonstration system are not intended for integration in 
the objective EPMS.  However, for the prototype to operate 
effectively and be useful, it must run in a reasonably quick 
manner. 
 
 Given the above decision criteria it was decided that the 
system would be built entirely in CLIPS with the exception of 
the User Interface which would be written in Ada using the 
GKS system.  This allows for rapid prototyping of the User 
Interface, the Support Modules and the Expert Power 
Management System.  CLIPS facilitated the rapid 
prototyping and evaluation of the domain knowledge base and 
decision rules.  Comparable rapid prototyping would have 
been more difficult in Ada.  CLIPS carries some overhead 
associated with it and is not as fast as a system coded directly 
in Ada might have been, however in this case the 
development issues easily outweighed the performance issues. 
 
4.0 Conclusions 
 
 Based upon our experience with this development effort, 
we have drawn the following conclusions: 
 
(1) The use of an expert shell can offer benefits for advanced 

concept programs.  The use of CLIPS in this program 
allowed engineering efforts to be concentrated in the 
application-specific areas, rather than in extensive 
software development.  These engineering efforts were 
concentrated on the determination of system functional 
requirements and on analysis and decision rules. 

 
(2) The use of a language standard such as Ada allowed for 

a high degree of machine independence.  In an advanced 
concept program such as the one described herein, the 
objective system is yet to be determined.  By 
demonstrating advanced processing concepts in a 
portable language, there is increased likelihood that 
software developed will be easily adapted to follow-on 
advanced concept programs and ultimately into an 
objective system. 

 
(3) The use of  Ada Graphic Kernel System (GKS) allowed 

for the incorporation of color graphic presentations that 
enhanced the presentation of demonstrations through a 
standard graphics system, although the features offered 
were somewhat limiting. 

 
(4) Overall software development costs were small, 

considering the scope and innovation required in this 
project. 

 


