
Implementing Advanced Artificial Intelligence Concepts in Ada:

A Case Study of a Prototype Expert System for a
Real-Time Electronic Warfare Application

Joan Hardy, U.S. Army CECOM Center for EW/RSTA,

Joseph W. Croghan and Myron L. Cramer, Booz, Allen & Hamilton Inc.

1.0 Introduction

 The application described in this paper arose from an
effort to develop an Expert Power Management System
(EPMS) for use with an advanced concept radar jamming
system. This program required the merging of expert system
technologies, Ada® software design, advanced Electronic
Warfare (EW) concepts, and real-time software design
concepts. This paper reports how these different areas have
been merged within the constraints of an advanced concept
demonstration program.

 A power management system controls the distribution of
electromagnetic transmissions from an electronic jamming
system used to defeat threat radar systems. Against multiple
threat radars, the power management system must identify
and prioritize threat emitters, decide which emitters to jam,
and must select effective jamming techniques for designated
targets. Available jamming power must be shared among
assigned jamming techniques considering frequency, timing,
and technique waveforms.

1.1 Project Goals

 The project was structured to address several areas,
corresponding to project goals. These were to: (1) validate
the use of an expert system for use as a power management
system, (2) include provisions for parallel processing
implementations, (3) develop EPMS software in Ada, (4)
provide the Army with a usable demonstration, and (5)
provide a flexible design architecture that can be adapted to
many different subsequent implementations.

1.2 Development Effort

 The EPMS development employed an Expert System
Shell, CLIPS. This shell was a key element in our approach
in that it provided a validated off-the-shelf artificial
intelligence product, designed for easy programming language
interface. The CLIPS Ada implementation combined with the
employment of Ada for the other portions of the software
results in a development that retains exceptional
transportability. Since EPMS is an advanced concept
demonstration program and can impact other advanced
concept programs, the ultimate hardware implementations is
yet to be determined. Accordingly, transportability of
software development is essential.

 The development project consisted of several tasks: (1)
determination and documentation of functional requirements,
(2) design and development of knowledge base, (3) design and

development of demonstration system software, and (4)
testing of concept.

2.0 Knowledge Base System Requirements

 In order to effectively demonstrate the Expert Power
Management System, a support environment, consisting of
an environment simulation, a simulation of threat systems, a
user interface and a flight path simulation was developed.
One design goal was to structure the system so that the
majority of the technical effort could be spent on the Expert
Power Management System. This section outlines that
design and the design tools used.

2.1 Top Level Demonstration System Design

 EPMS is envisioned as an executive control unit to
provide a higher level of control for the advanced radar
jamming system based upon a higher level of situational
awareness resulting from (1) integration with other Aircraft
Survivability Equipment (ASE), (2) interfaces with aircraft
avionics, (3) advanced decision logic to optimize resource
utilization against multiple threats.

 As noted above, the demonstration system contains five
subsystems: the Expert Power Management System, the User
Interface, the Environment Simulation, the Adversary
Doctrine, and the Flight Path Simulation. In addition to
these software subsystems there is a set of databases that are
used by the software. The relationships of these software
modules and databases are shown in figure 1, along with the
data flows between the modules.

Expert Power
Management

System

1
EPMS Data

Bases

D2

User
Interface

2

Environment
Simulation

3

Adversary
Doctrine

4

Avionics and

 Electronics Data

Environment

and

Threat Data

Environment

and

Flight Path Data

Threat Actions

Environment, Threat

and Aircraft Data

Environment

and Threat Data

Control

Data

Flight
Path

Simulation

5

Avionics and

Electronics Data

Environment Data

Flight Actions

Figure 1

 Each of these components plays an important role in the
system operation. The Environment Simulation maintains

Washington Ada Conference

1990

A Case Study of a Prototype Expert System for a Real-Time Electronic Warfare Application

-2-

data about events and objects external to the aircraft; this
includes primarily threat radars and systems. The Adversary
Doctrine module uses data from this simulation to control the
actions of the threat radars and and systems. The Flight
Path Simulation maintains data on aircraft-related events
and objects, including avionics data, the receiver data and the
jammer information. The Expert Power Management System
uses data from the Flight Path Simulation, as well as
environment data to control the actions of the aircraft's
jammers and receivers. Finally, the User Interface displays
the critical information from the other system components as
well as providing a mechanism for user input and control of
the system.

 Since the primary purpose of this effort is to develop an
Expert Power Management System, the development of this
module was undertaken first. The following section describes
the issues involved in the Expert Power Management System
requirements analysis and design.

2.2 Expert System Requirements

 The requirement for the EPMS is to specify expert
knowledge about the effective use of radar jamming
equipment as a knowledge base, such that the knowledge may
be used to automatically manage the use of that equipment.
The advantage of an expert system is its ability to apply
diverse, largely unstructured knowledge to a problem. The
problem to be addressed by the EPMS is made up of such
knowledge. The EPMS must balance mission, flight context
(friendly and opposition forces and actual location, terrain,
etc.), equipment condition and availability, and the actual
threats that must be countered.

 The major aspect of the problem is resource allocation. A
number of threats must be countered as effectively as possible
with a limited amount of equipment and power. This type of
problem is amenable to a number of solutions, including
linear programming as well as expert systems. Complicating
this issue, however, are a host of constraints that must be
taken into consideration. Traveling wave tubes must not be
allowed to overheat. Jamming techniques must not be
allowed to inadvertently draw friendly units under fire.
Threats must be addressed according to a set of priorities.
Transmitters can only operate over certain bandwidths, and
must be applied to threats in an appropriate manner. These
issues must be addressed in concert with the basic resource
allocation problem, in a coherent and efficient manner.

 The total problem is sufficiently complex to require non-
conventional algorithms. Moreover, it is of a form that lends
itself to an expert systems approach. The implementation
will represent the knowledge of experts in the field of
electronic warfare, providing an electronic expert, EPMS,
capable of reacting swifter than any human expert.

 Many expert systems are built using expert system
shells. These are software tools designed to support the
construction and/or execution of expert system software. In
some systems, the shell is the equivalent of a language
interpreter and the entire expert system is written in the
shell "language." In other cases the shell represents only a
portion of the finished system. This may take the form of an
embedded shell kernel within the system, or the shell may
generate source code for the expert system that will be
compiled by the same compiler used for the finished product.

 Typically expert system shells provide a high-level
language to represent "rules". Similar in form to a
conventional programming language if..then construct, a rule
specifies a set of conditions to which it applies and a set of
actions to be accomplished when the conditions are met.
Unlike its conventional cousin, a rule is conceptually a

parallel construct, evaluated along with other rules against
current context and not a part of a sequential process or
decision tree.

 Rules lend themselves to processes involving unrelated,
specific actions to be taken in particular situations. The
EPMS problem presents a series of special cases and
techniques that must be used only when certain conditions
are true. The conditions, in this problem, are elements such
as the location of friendly and opposition units, the status of
onboard equipment, the current threat environment and the
current mission and mission status. The rules represent the
relationship between a perceived opposition unit and its
threat, the relationship between the operation of equipment
and its future utility, the probability of particular techniques
being effective against threats, and the requirements of the
mission.

 In some cases, the use of rules is not sufficient to a
particular problem, and other techniques must be used.
Depending upon the shell, this may require representation of
the technique using rules, extension of shell capability, or
special software developed for the particular technique. One
example of such a technique would be the use of constraint
propagation networks to represent the relationship between
power demand, available power, and the degeneration of
equipment such as the traveling wave tubes (TWT) due to
overuse. Another way to approach the overheating of TWTs
might be the use of temporal logic to specify the relationship
between equipment usage and equipment availability. The
first technique would require special code to be developed in
the expert system shell while the second technique would
lend itself to rule specification.

 Hardware hosting EPMS will change over time, as a
result of its advanced concept stage. Three versions of the
EPMS processors are envisioned at this stage: the
development system, an operational system, and an
alternative version of the operational system using a parallel
architecture.

 The development hardware was a conventional
microcomputer, an 80386 MS-DOS microcomputer. By using
a conventional machine, the full range of tools and utilities
available under MS-DOS were used to increase productivity.
Additionally, development on an MS-DOS compatible
machine has facilitated hosting the demonstration model on
similar machines.

 The actual configuration of the operational hardware is
open. The assumption at this point is that a general-purpose
microcomputer will be used. The basic requirement is that it
be a target for some Ada cross-compiler, so that the EPMS
code may be ported to it at the appropriate time.

 Apart from selecting the actual processor used for the
EPMS, interface with EW system hardware will be required.
The EPMS software will be carefully modularized to avoid
contaminating general-purpose code with implementation-
specific issues. As a general rule, it is assumed that
communication between the EPMS and other EW and avionic
systems will be via data buses. The details of these bus
designs are left for future development.

 The major requirement for any real-time embedded
system is performance. One method of providing a high-
performance system is to employ multiple processors to share
the processing load.

 The use of any parallel processing architecture affects
the structure of software. These were considered in
developing the EPMS functional design and in grouping and
apportioning processes.

A Case Study of a Prototype Expert System for a Real-Time Electronic Warfare Application

-3-

2.3 Provisions for Parallel Processing

 In developing the design for EPMS, provisions were
included for future parallel processing implementations.
These provisions began with the initial partitioning of system
functional requirements. The resulting breakout of the
EPMS design included separate functional elements for (1)
the Expert System, (2) the Input/Output (I/O) Processor, (3)
Receiver Manager, (4) Jammer Manager, and (5) the Tracker.
The objective of these partitions of the processing work load is
to unburden the Expert System as much as possible from
routine activities that might otherwise distract it from
situation analysis and decision making responsibilities in a
real-time environment.

 The I/O Processor will handle incoming and outgoing
communications between EPMS and the other EW and
avionics systems. This element attends to the communication
requirements of the on-board data busses, forwarding
commands and receiving data reports.

 The Receiver Manager supervises the use of the
available receiver assets, issues measurement commands as
directed to by the Expert System and handles status
reporting from these receivers.

 The Jammer Manager controls the use of the available
jammers, issues jamming assignments as directed by the
Expert System.

 The Tracker conducts mathematical calculations in
support of jamming activities as assigned by the Expert
System.

2.4 Other Software Components

 The other four software modules in the demonstration
system were designed in such a way that is compatible with
the Expert Power Management System, however since these
other components constitute a support environment in which
to operate the Power Management System, they are not
intended for use in the objective EPMS system. This means
that some of the constraints about development languages or
run-time speed are less important. After careful examination,
it was determined that developing all software components in
the same language would be beneficial. This would allow
increased portability and less development overhead. Since it
is not usually difficult to integrate expert system shells with
the language the shell is written in, it was decided that it
would be acceptable to create some modules in Ada and
others in a shell written in Ada, such as CLIPS.

3.0 Software Development

 In order to effectively develop software for the Expert
Power Management System and the support environment, an
appropriate development environment was chosen. This
section outlines the development environment options and the
configuration chosen for this application.

3.1 Software Design Tools and Methodology

 A challenging part of the EPMS development effort was
selecting a software design that met the constraints of the
software development resources and satisfied the technical
requirements of the EPMS.

 It was an objective to have a design tool that could be
easily used by all of the people involved, software developer
and subject matter experts, so that the design could be easily
revised. Natural Architect Workstation by Software AG was
selected. This packages allows the rapid development of data

flow and control flow diagrams, as well as building a data
dictionary from the diagrams. Figure 1 of this paper was
created using Natural Architect Workstation. With this tool,
the design was easily revised and the results of design
meetings quickly documented. In fact, some design meetings
actually took place in front of the computer and the changes
were made immediately.

3.2 Development Environment Options

 Traditionally, expert systems have been constructed
using flexible languages embedded in high-productivity
development environments. Special-purpose hardware and
software supported rapid prototyping and high quality
graphics-based user interfaces. More recently, as expert
system technology has advanced and applied more and more
to real-world issues, it has been necessary to move from these
special-purpose development environments to more generic
ones.

 EPMS is a prototype of a real-time embedded system. In
the late 1970's an effort was initiated to develop a language
for just this type of system, resulting in the Ada programming
language. Recognizing the need for language elements
dedicated to embedded systems, the language designers
provided mechanisms for multi-tasking (either time-sliced or
true parallelism), interrupt-driven code, and direct hardware
access.

 The driving factor behind the development of the
language, however, was the proliferation of languages and
development environments. To this end, Ada compilers must
be validated against strict criteria before they are allowed to
bear the name "Ada," which has been trademarked by the
Department of Defense. The benefit to this project is that the
language is standard, providing a stable base on which to
build the EPMS. Since the final hardware configuration is
still open, the choice of a standard language is of utmost
importance.

 The implementation of an expert system in Ada might be
accomplished on a number of levels: using an expert system
shell written in Ada, using a set of library functions in Ada,
generating Ada code from expert system constructs, or hard-
coding expert system algorithms in Ada by hand.

 Using an expert system shell written in Ada
provides the benefits of the expert system shell while
providing the portability and other benefits of Ada. The
implementation of the expert system shell may be done
consistent with accepted Ada programming style. One
potential drawback is that the shell may not provide all
of the necessary functionality or performance for a
particular project, requiring changes or extensions to the
shell. Thus source code, or some usable mechanism for
extending the shell, is desirable. One such shell, CLIPS,
is described in more detail in Section 3.2.

 Using a set of library functions in Ada provide the
benefit of rapid development, while maintaining the
speed and flexibility of Ada. A typical place where this is
employed is the Graphical Kernel System (GKS), used
for user interface building. By using this system, a user
interface can be rapidly generated in Ada. GKS is
described in more detail in Section 3.3.

 Generating Ada code from expert system constructs
is a compromise between the first positions. These
constructs (rules, constraint networks, etc) would be
specified as if for a shell. In some cases, a shell would be
used to test the constructs interactively. When
necessary, the constructs would be translated into Ada,
allowing them to be compiled and executed at the speed

A Case Study of a Prototype Expert System for a Real-Time Electronic Warfare Application

-4-

of compiled programs. This approach provides some of
the advantages of the shell approach and eliminates
some of the disadvantages. Unfortunately, many of the
disadvantages of the translation would also be
introduced.

 Hard-coding expert system algorithms in Ada by
hand may well be the method most in the spirit of the
language. As support for reusable code modules
provides libraries of expert system algorithms and data
structures, this option will become more prevalent.
However, at the current time the expense associated
with building an expert system from scratch would
preclude any type of prototype and iterate development
methodology.

 Requirements dictate the fastest system, but contractual
constraints of an advanced concept program prohibited
spending too much time developing custom tools for this
project. Moreover, the choice of tools already developed and
available is very small, due to inertia on the part of the
artificial intelligence community with respect to Ada. In order
to develop an effective expert system, some combination of the
above approaches may be required in similar programs. This
will allow other developers to capitalize on the advantages of
some of the approaches in situations where the disadvantages
are not significant.

3.3 C Language Integrated Production System

(CLIPS)

 The Artificial Intelligence Section (AIS) at
NASA/Johnson Space Center (JSC) has encountered a
number of problems delivering LISP-based expert systems to
NASA users. Three problems were especially detrimental to
the use of expert systems within NASA: low availability of
LISP on most computers, high cost of specialized LISP tools
and hardware, and poor integration of LISP with other
languages. These factors all made embedded applications
difficult.

 To solve these problems, the NASA/AIS developed an
expert system tool written in and fully integrated with the C
language: the "C" Language Production System (CLIPS).
CLIPS was designed specifically to provide high portability,
low cost, and easy integration with external systems. CLIPS
is also available in the Ada language, and as with C the Ada
version is easy to integrate with external Ada programs. The
primary representation methodology in CLIPS is a forward
chaining rule language based on the Rete Algorithm. CLIPS
provides reasonable performance on a wide variety of
computers. It also includes tools for debugging. CLIPS in in
use a most NASA centers, numerous universities, and many
places in private industry. It is available at a low cost
through NASA.

 Ada-CLIPS is an expert system shell descended
originally from Inference Corporation's ART™. The Ada
version of CLIPS was converted from the C version of CLIPS,
which was based loosely on the concepts embodied in ART.
CLIPS provides a fairly rich expert system development
environment, primarily based around a forward-chaining
inference mechanism which uses the Rete Algorithm. This is
a very traditional expert system environment. Source code is
provided with the system and instructions are provided for
extending it to handle additional functionality.

3.4 CLIPS Development Environment

 In applying CLIPS, an application developer encodes
domain rules in CLIPS syntax. This syntax is fairly easy to
learn and provides immediate results that can be evaluated
for accuracy. While the encoding of the rules is simple, the

flow of control in a rule based system is usually difficult to
predict, since CLIPS decides the best order in which to fire
the rules. Some time can easily be spent attempting to
determine why a particular rule is not firing at the expected
time, or why it is firing when it was not expected. CLIPS
provides some debugging tools to help work these issues.

 On the PC the Ada version of CLIPS offers a
conventional development environment. CLIPS commands
are interpreted from a command-line interface. For example:
to see facts, the command "(facts)" is entered; to view the rule
agenda, the command "(rule agenda)" is entered. Other
development features are invoked similarly. CLIPS allows for
loading predefined files, facilitating development. The "C"
language version of CLIPS provides additional development
support for both the PC and the Macintosh implementations.
Both of these versions support a window system that can
show the facts list, the agenda and rules as changes occur
during a run. In order to utilize these enhanced environment
features, we tested the method of generating CLIPS code
using one of the "C" versions and then running this code
under the Ada version of CLIPS. We found that this method
worked well, although there are some minor incompatibilities
among the three versions.

3.5 CLIPS Execution Environment

 The CLIPS rule bases can be either executed directly
using the CLIPS interpreter or called from an Ada function.
In the case of this project, CLIPS is called from an Ada
function, namely, the User Interface. The executable for the
software is an Ada executable, this function sets up the user
interface and calls CLIPS. CLIPS then runs, firing all
appropriate rules, and makes periodic calls back to the Ada
function in order to update the user interface. When the user
gives input to the interface, that data is passed to CLIPS.
There is no operational difference between this method of
operation and starting the CLIPS interpreter, loading the
appropriate files and running the rules base from there. In
the application described in this paper, Ada was chosen to
control the processing since User Interface is the top level
function for the demonstration system.

3.6 Graphics Kernel System (GKS)

 The main purpose of the Graphical Kernel System is the
production and manipulation of graphics information. These
graphics can vary from simple line graphics to images in grey
scale or color. GKS allows programs to support a wide variety
of graphics devices and is defined independently of
programming languages and was adopted as an International
Standard by ISO in 1985 for computer graphics. By using a
library of grahics functions and a set of bindings appropriate
for the development language, a programmer can use GKS
from many different languages. For the EPMS demonstration,
the Ada implementation was used.

 GKS allows a programmer to develop a graphical
interface much more rapidly than could be done from scratch.
The advantage of using GKS over another system is its
portability and maintainability resulting from the strict
standards of GKS.

3.7 Completing the Development Environment

 Selecting a development environment involved two
primary decision criteria: the flexibility to model the
necessary constructs; and ease of software development and
modification. Many times these two criteria are mutually
exclusive. As a particular development environment provides
an increasing set of predefined functions and features it
facilitates the development and modification of software,
however, it may also become difficult to represent very

A Case Study of a Prototype Expert System for a Real-Time Electronic Warfare Application

-5-

specific constructs since the environment is less flexible. It is
particularly important to be able to develop and modify
software quickly to facilitate the development of the EPMS
prototype. Rapid iteration cycles with the domain experts are
critical to system success.

 A secondary decision criteria, system speed is not as
important as those criteria listed above since many parts of
the demonstration system are not intended for integration in
the objective EPMS. However, for the prototype to operate
effectively and be useful, it must run in a reasonably quick
manner.

 Given the above decision criteria it was decided that the
system would be built entirely in CLIPS with the exception of
the User Interface which would be written in Ada using the
GKS system. This allows for rapid prototyping of the User
Interface, the Support Modules and the Expert Power
Management System. CLIPS facilitated the rapid
prototyping and evaluation of the domain knowledge base and
decision rules. Comparable rapid prototyping would have
been more difficult in Ada. CLIPS carries some overhead
associated with it and is not as fast as a system coded directly
in Ada might have been, however in this case the
development issues easily outweighed the performance issues.

4.0 Conclusions

 Based upon our experience with this development effort,
we have drawn the following conclusions:

(1) The use of an expert shell can offer benefits for advanced

concept programs. The use of CLIPS in this program
allowed engineering efforts to be concentrated in the
application-specific areas, rather than in extensive
software development. These engineering efforts were
concentrated on the determination of system functional
requirements and on analysis and decision rules.

(2) The use of a language standard such as Ada allowed for

a high degree of machine independence. In an advanced
concept program such as the one described herein, the
objective system is yet to be determined. By
demonstrating advanced processing concepts in a
portable language, there is increased likelihood that
software developed will be easily adapted to follow-on
advanced concept programs and ultimately into an
objective system.

(3) The use of Ada Graphic Kernel System (GKS) allowed

for the incorporation of color graphic presentations that
enhanced the presentation of demonstrations through a
standard graphics system, although the features offered
were somewhat limiting.

(4) Overall software development costs were small,

considering the scope and innovation required in this
project.

