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A combinatorial treatment of exchange effects for
many-particle systems is made by writing the N-particle
cluster integral for a system of hard-sphere bosons in
three dimensions as a weighted sum of cyclic-exchange
cluster integrals. The relative size of each exchange
term is then systematically evaluated and its behavior
numerically simulated as a function of temperature, den-
sity, and particle number.

A comment is made on the formal procedure for treat-
ing composite particle statistics. Limitations are dis-
cussed on composite particles that can be treated as
bosons.

The ground state of the molecular trimer is studied
in three dimensions for four potential models: the square-
well, the exponential, the yukawa, and the gaussian. The
exchange symmetries for the boson trimer and for the spin-
1/2 and spin-3/2 fermion trimers are treated and incorpor-

ated into the trial wavefunctions for these three cases.



This distinguishes the energies of these cases. Bounds
of the threshold binding parameters are numerically cal-
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INTRODUCTION

The quantum-mechanical principle of indistinguish-
ability of identical particles is often interpreted with
the idea that due to the overlappiﬁg of the individual
particle wavefunctions,it i1s impossible to tell which
function is due to which particle.

The principle of indistinguishability combined with
the spin-stafistics of the particles leads to exchange
effects in observed quantities.

There are many examples of exchange effects in phys-
ics and chemistry. In nuclei, exchange effects of mesons
lead to internuclear forces. On the atomic scale, the
Pauli exclusion principle leads to the electron shell
structure. Between atoms, short range interactions have
repulsions due to distortions of atomic electron distri-
butions. In metals, exchange interactions affect the
electron distributions. The Heisenberg spin interaction
between neighboring atoms in a ferromagnetic lattice is
due to atomic overlap. Nuclei spin-statistics appear in
the rotational spectra of diatomic molecules, both in
molecular spectroscopy and in the specific heat of the
gas. In liquid 3He and qHe, the different phases have

different exchange structures. The superfluid phase of



qu suggest that to a large extent, uHe atoms can be
treated as bosons.

We believe that exchange effects are also important
between more massive objects like molecules, where the
intermolecular forces are much weaker than those binding
the molecules together. Here we regard the molécule as
a composite boson or fermion. We consider some of the
ways that exchange considerations affect the existence of
molecular associates like the trimer.

This thesis is divided into two parts. Part I deals
with exchange effects in a many particle system. Part II
treats the exchange effects in the three-body problem.

We take the position that the wavefunction, even a
trial wavefunction in a variational calculation, should
carry the knowable information in the form of quantum
numbers of the system.

There are two spin cases for a trimer composed of
spin-1/2 fermions: the total spin can be 1/2 or 3/2. The
exchange symmetries of these two fermion cases are differ-
ent from each other and from the boson case. These dif-
ferent exchange symmetries lead to different forms of
variational trial wavefunctions which lead to different
variational energies for the three cases. From this we
conclude that even on this relatively large scale, quan-

tum indistinguishability is important as it may in certain



cases restrict the formation of some of these molecular

trimers.



PART T

MANY-BODY EXCHANGE EFFECTS



CHAPTER 1
EXCHANGE CLUSTER INTEGRALS FOR HARD SPHERES

Exchange effects resulting from quantum statistics
of identical particles enter into quantum expressions for
the partition function, correlation function, and virial
coefficients of a many particle system. The behavior of
these exchange terms is believed to be related to observ-
able properties, e.g., the A-transition in Helium.

Analysis of these terms is complicated by the enor-
mous numbers of possible exchanges. For example, there
are 2.63l3x1035 permutations of only thirty two pafticles.
To have any chance of following the behavior of exchange
terms, it is necessary to simplify and systematize the
approach used, so that only the more important exchanges
can be given a more detailed treatment.

A permutation of N particles can be written as a
product of cyclic exchanges on subsets of the particles.
When the interactions of the particles are over a short
range, and when the thermal wavelength is small in com-

parison to l/pl/3

, the particles can be thought of as be-
ing essentially free much of the time; an approximation
can be made and a combinational treatment can be adopted

from the ideal Bose gas, in which the symmetrized N-



barticle cluster integral for a system of bosonsl is
written as a weighted sum of cyclic-exchange cluster in-
tegrals. The relative size of each exchange term is then
systematically evaluated and its behavior numerically sim-
ulated as a function of temperature,density, and particle
number.

It is noted that the models presented here are in

three dimensions.

A. TFormulation

The cluster integrals are written as integrals of

the N-body thermodynamic Green's function

' - 1 1 "
G3N(£1"'NN’£1"‘NN’B) = <£1"'£N|6XP( BHN)lzl"'£N>

(1.1)
which solves the N-dimensional Bloch equation
(H, + S)8. = 0 (1.2)
N 9B " “3N i
with the initial condition
N
Gap (rle.or); 50) = 1 83(ri-p.) (1.3)
INALTCANRRLT AN TS T LD % RATRA .
and the boundary condition
1
G,y~0 as I{i—gi > o (1.4)



G3N has a functional integral expression

1 -~
<£l...{Nlexp(—BHN)lgl...£N> &

b r
Al AN -S[X;(t)... %X (t)]
I el o‘DXl(t).-@X (t)exp( £1 ol )
1 Bu : h
' (1.5)
where the action
AR
N 1,722 1529
S[R, (E) .. By (D) ]= ({ at{ZM X7 (t)+. . +7M XL (E) VX, (£) . R(E) 1),
(1.6)

The cyclic exchange cluster integralzis the N-particle

volume integral of the thermodynamic Green's function where

the final N-particle positions are a cyclic permutation of

the initial positions:

bN(cycle)=N%- Foan) dgl...d£N<£2...{erlexp(-BHN)|£l...rN>,
: n A

2 Q
(1.7)

The symmetrized N-particle cluster integral for a system
of bosons‘.l

S 1 f 1
b (Q):'—T—' z f...fd R Lo A, ;MR )
N N:§ permutation @ Q R WAl N

(l. 8)
X exp(—BHN)|£l...£N>

where the sum is over the N! permutationsof the N-particles.

1 1 .
The El"'EN are permutations of the 51"'£N'



B. Ideal Bose Gas

For a non-interacting Bose gas,

2
N p.
H g z 3
N g2 2N
N P2
! ', ] _ 1 ' _ __1_
G3N(£l"‘£N’r1"‘rN’8) = <£1...£N|exp( Bizl 2M)I£l"'£N>
% 2
= —— expl (r.-r.)°] (1.9)
3N 2 gk Ri ad
where A is the thermal wavelength
2 4
A = [2IBR y% (1.10)
=1
by (eycle)=rrg é...é d£l"'d£N<£2"'£N£ll
N p} (1.11)
X exp(—BiZl—iﬁ)lrl o>
i & Ll : 2
= = [...[ dr dr, —=~ expl-— } (p.-r. .)°]
N:Q 0 0 Nl N A3N AZ Z1 Vi Al il
with roEry-
3(N-1)
1 1 XA
b, (eycle) = 7= [ dr
N NIQ 0 NNA?N N3/2
1
= (1:12)
it A% §9/2

The symmetrized.cluster integral can be calculated from

(1.8) by decomposing each permutation into n, %-cycle



exchanges, where

N
N= ] 4ng (1.13)
=1
N!
there are N permutations of each type character-
n
i % !
gy B L
ized by a set'{nz}N . For non-interacting particles the
2=1

Green's function factors and only the cyclic exchange terms

contribute. - N
2
Batiy = =0 § o fuif dpgiaidny 1 e B
: {ng} e W og=1 ™ g .
: ng . 2
i 14 :
3 (§ <£2"'EZ{lIeXP(_BHQ)lil"‘£2>)
N ng n
= % T —EQ———— 2! bg(cycle)) .
{ng} 2=1 2% nz!
N n, n
& f o w o R S R (1
- L —d . .lu)
T ingy PR onr 2337

To find the maximally contributing {nl}, approximate the

3,5 4

logarithm of A by by its‘largest term.

3
m2°p> % im

>

N Q 5
_N 9 = 1
+ gzl [nSZ’SZmA3 5 ngwnz m nz.] (1.15)

S

Incorporate constraint (1.13) with #mz as a Lagrange multi-

plier and find extremum.

N
sCmA’py + ] anj imz) ¥
ity (1.16)
2 Q 5
! én,lim =5 - 5 im& + 2z - mn,l =0
g=1 Y
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Hy 2 m—m——— €1.17)

The density can be expressed as a series in z from (1.13)

N
Y &n
=
p_Q— Q )
v (1.18)
N 3
= z 4
g=1 33372

In the calculation of (1.9) and (1.11), the large volume

limit was used, resulting in a loss of a term %—zz in

(1.17) and a term 1 z'Q in (1.18). This "condensation"

Q
term can be understood as being due to a build up of par-

ticles in the zero-momentum state.

C. Hard Sphere

We consider the hard-sphere pair-potentials
VLX, (B) ... X (6] = iZj VI (0) =X, (), (1.19)
where

w, |X.(t)-X.(t)] < a
vl nJ
V(X, (t)=-X.(t)) = (1.20)
n1 N

0 L(t)-X.(t

» X% 0] 2 a

This potential has the effect of excluding part of the

total volume of the system, since any path Xi(t) that
s

brings one sphere close enough to any other sphere so that
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their volumes overlap is given fhe weight e™” = 0. In
calculating bN(cycle) from (1.7) the integrals are all
coupled together by the potential: the parts of fd£1
that are excluded depend on the configuration oneach of
the other E'S' As an approximation, we neglect this de-
pendence and reduce the available volume § by an amount
Q , which depends on the number and the size of the

excl

hard spheres.

'é...é <£2...£N£l|exp(—BHN)Igl...£N>d£1...d{N =

ro r Bh
" Al ' 1
gzsfz d,{»l...dgN(Irl...jr g%ql(t)...@%(N(t)exp[—ﬁé' dt x
v N
P L Tl
x {FMX] ..ot FMXQ 4 v[zl(t)...i(N(t)]}])
3 &Y
=Q£Q Q.{Q dgl...dgN(fr ...fr B Xy (). ../ (1)
excl excl vl ~N
Bh :
1 1 1,52
x expl-x f dt{zMX] + ...+ 7MXN}])
(1.21)

For high temperatures, when the thermal wavelength from

(1.10)

is much less than the hard sphere diameter a, (1.21) is

approximately5



-1

3,a.2
Q-9 ) N7~ (5)
(1,213 = 20, anile et i) (1.22)
A% (N sinT)?
N

which can be interpreted as the classical action for a

uniform rotation of N particles equally spaced on a circle

= through the angle 2T in time Bh. TFor

of radius N

(25inﬁ)

an estimate of the excluded volume, we use

Q = Ntrad = potna (1.23)

and (1.21) becomes

N1T3(i 2
£1.21) = (l-p%nae) 83 expf—————i;—7} (1.24)
A (Nsinﬁ)

and the N-cyclic exchange cluster integral, (1.7), becomes

(l—p%ﬂa3) —Nwa(%)2
by(cycle) = ——————g——-exp{~————5—7} (1.25)
N! A (Nsinﬁ)

The symmetrized N-particle cluster integral bg(ﬂ) is cal-
culated from (1.8) as it was for the ideal gas. In fac-
toring the Green's function, we are neglecting part of the
interactions between particles in different %-cycles; these

are included only through the excluded volume.

N n
S N | N! 2
bN(Q) e m 2 'N_——__— f.oafdgloo'd£N< T_I' (5200052'{’1) I
{n,} ng , 2 @ 2=1
2 T 2 Nno-
=7 \
N nSL'
x exp(-BHN)I'ﬂ (rl...rg,) > (1.26)

=1
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. N
S e kIt bl
bN(Q) = S_i z '-T-T _E_,Q—,—-T I .o e f d;{:l...drj\ij
{n,} 2=1 2 %n
2 2° Q-0 Q
excl excl
r r
vz Wl (1.27)
(fr fr @;b((t)...gal)éz(t) X
vl n
Bh n,
g 1,82 1,.22
1 N an n
- T ——(2! b,(cycle))
Q'{nl} 2=L 47n, ! %
n g 5.0 3,a,2
s 1 5 N @ z(l-pgwa ) nzz T (T)
bo(Q) = = 0 exp{ ¥ €1.28)
4 T ny} e=1 4Mn,r A30L (2sing)?

We find the set of maximally contributing’{nz} subject to

(1.13) as in (1.15) and (1.16):

N
3,8 n
N (1—p%wa3)9 Rﬂa(%)Q 2
L 8n, (ol : 1 - 5 —mL-tm n,+ Imz") = 0
=1 A (lsinz)
(l—piﬂas)ﬂ lﬂg(i)z
. 3 - A 2
I'll = 3 exp{—‘————q-r—?} Z (1.30)
A°% (zsinIO

As in (1.18) an expression for the density follows from

(1.30).



I; 14
&n
S\ QU 51 »
4 & 3,a.2
2 (X) 0
N exp{- - 2} Z
Y 3 (£31n19
- (l_p_3_'n'a ) z " 3 . (1-31)
=1 A
Solving (1.31) for p 3 8.2
N 1 - L (T 9
z -3 exp{— T 2}Z
=1 A (Qsinf)
p = 5D (1.32)
T LR )
1+ zma ] =5 expi- =}z
2=1" A (Rsinz)

The condition (1.13) determining z is replaced by an im-
plicit inversion of (1.32) the N-dependence of z is weak
as is discussed later in Section D.

In the 1limit N»«, the power series in z can possibly
diverge. Even when it does, the density achieves at most

the maximum value

o = 3 (1.33)

corresponding to an estimate of the close-packing of the
particles.

The relative contribution of the f%-cycle exchange
is given by the fraction of the total number of particles
that are in an f%-cycle. Since Ny, given by (1.30) is the
number of f%-cycle exchanges, the likelihood of a particle

being in an %-cycle is (for 2>1)
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Wy 11 w3 “3(%)2 )
P(L) = —= = —=(= - =ma )exp{- } 2 (1.34)
N 3°p 3 . T3 2
A (251nz)
The direct term is
-1l _ 13
P(1) = A3(p Z7ma ) 2

The constraint (1.13) appears as a normalization condition

in the P(2).

3 1
Yy P(L) = “——— =1 (1.35)

=1 N

This is effected by the choice of z in (1.34).

D. Numerical Simulation

A basis for a systematic comparison of the-relative
contributions of cycles of various lengths is provided by
(1.34). In this section we present a numerical simulation
to show how this approach is used to analyze trends in the
behavior of the exchange terms as a function of tempera-
ture, density, and particle number.

It should be noted that (1.22) on which P(&) in
(1.34) is based was established for high temperatures and
may have no direct application in a theory of the A-trans-
ition.

The calculations presented here were performed on
a Hewlett—Packard 9810 programmable calculator and used

a = 2x10_8 cm for the hard sphere diameter. The mass
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used in calculating the thermal wavelength was M =

6.67x10—2u g. (These parameters are appropriate for

e, )

The values of z were chosen so that the normaliza-
tion condition (1.35) was properly satisfied. Comparing
the columns of Tables 1-1 and 1-2, the effect of tempera-
ture on the exchange terms is simulated. In addition to
the direct term, there is always a secondary peak in the
P(2). This secondary peak is never any lower than the
three-cycle term. We see this in the last column of
Table 1-2. As the temperature is decreased, this second-
ary peak shifts to the higher exchange terms and grows in
comparison to the direct term. At very low temperaturés
this model predicts that the N-cycle exchange dominates
even the direct term, as is seen in the first column of
Table 1-1.

Comparing column two of Table 1-1 and the columns
of Table 1-3, a similar effect is noted when the density
is increased.

Table 1-Y4 compared to the second column of Table 1-1
shows how doubling the total number of particles changes
the relative values of P(&). There are more terms added
to the series; the value of z must decrease to preserve
the normalization; this damps the importance of the
higher exchange terms. We note that the distributions

are only weakly dependent on particle number.
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Table 1-1

N = 32 p = 2.14334 x 10%2%/cm?®

T & 1% T = 2% T = BV

z = 1.2136563 z = 1.349941Y z = 1.9418053

2 P(L) : P(L) P(2)

o
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i
I'l "
{eeg
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Tt

K,
k
k.
k.
K.

K

ot

% B

P
e, e e e
IR R RS s i

.,_
o

=

]

g

T T
SOS I K3
e =

.,..
2
Pl

K

T ST
% I 5
=

1T
Lt
a

i, b
I | K,
I é [,
i | ki

B, E
‘ S ' 5
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Table 1-2
N = 32 p = 2.14334 x 1022/cm?
T & 89K T = 15%K T = 50K
z.= 2.101957118 | z = .865277773 | z = .1u421826939
L PL2) P(L) P(L)
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Table 1-3

N = 32 T & 2K

p = 2.357674 o = 2.5934L41L 2.8527855U
x 1022/cm? x 1022/cm?® x 1022/cm?

z = 1.384328113 |z = 1.42901014 pa 1.51111u405

L P(%) P(%) P(2)

1. CELE
):-: B l“.l u b
3 B E

’ii' " “ ]
o B
£ B, e

o k. E

i B
2. 6

152 84
s 441 8
=

g e
a

L% X

i

i

1:2:::
15
Ik
T8,
16.
17
18,
1
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Table 1-4

3

14334 x 10%2%/cm

p B4

64

.3287094089

z = 1

2

P(4)

P(%)
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FOOTNOTES

T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959).
The 1/N! in (1.7) is used for consistency with Lee §&
Yang cited above. Other authors,(e.g., below) do not
have this factor. The results of this chapter do not
depend on which of these definitions we use.

T. L. Hill, Statistical Mechanics, Chapter 5 (McGraw-

Hill, N.Y., 1956).

J. E. Mayer and M. G. Mayer, Statistical Mechanics,

Chapter 13 (Wiley, N.Y., 1940).

L. W. Bruch, Prog. Theor. Phys. 50, 1835 (1973).
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CHAPTER 2

A NOTE ON COMPOSITE PARTICLE STATISTICS

"Why is it that particles with half-integral
spin are Fermi particles..., whereas particles
with integral spin are Bose particles...?...

The explanation is deep down in relativistic
quantum mechanics. This probably means that we
do not have a complete understanding of the
fundamental principle involved."

R."P. Feynman
Lectures in Physics, Vol. III

The statistics of a particle composed of several
elementary particles has been of interest for many years.
Ehrenfest and Oppenheimerl concluded that nuclei obeyed
Bose-Einstein or Fermi-Dirac statistics according to
whether the number of particles in the nuclei was even or
odd. More recently M. Girar'deau2 has studied the problem
in the context of Bose-Condensation in uHe.

As the only stable massive particles are fermions,
the extent to which composite particles of fermions be-
have as bosons is of interest in exchange phenomena.

We comment on several questions that arise. (i) What
is the formal procedure for treating composite particles?
(ii) What restrictions are there on the regarding of com-
posite particles as bosons? (iii) Where does the formalism

prevent us from treating the wrong things as bosons?
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A. Second Quantized States

To discuss the statistics of many-particle systems,
we use the second-quantized formalism. In this approach,
all physical observables are assumed to be elements of
the algebra generated by a set of creation and annihila-
tion operators. The particle statistics is incorporated
in the algebra, whose generators obey a set of canonical
commutation relations in the case of bosons or a set of
canonical anticommutation relations in the case of fer-
mions.

Denote the boson creation and annihilation opera-

+ p : g
tors by a, and a respectively. The index o carries the

a’

momentum and spin information about the states. The can-

onical commutation relations (CCR) are the set

+ o+
[aa,aa,] = 0
[aa,aa,] = 0 (2.1)
+
[au’aa‘] = aaa‘

in which the bracket denotes the commutator.
Denote the corresponding fermion operators by C;
and Ca' The canonical anticommutation relations (CAR)

are the set

+ _+
{ca,ca,} = 0
{ca,cu.} = 0 (2.2)
+
{Ca’ca'} B Gaa'
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"in which the curly bracket denotes the anticommutator.
States are representable by particle creation
operators acting on a state |0>, the vacuum state. There
are many representations possible depending on which state

|0> is used to define the vacuum. The n-particle state is
a ...a. |0>. o £248)

If Qa(x) is a one-particle wave function, the rela-

tion to the second quantized representation is given by

ay = fax ¢ (x) ¢" () (2.4)
for bosons, or
¢l = fax ¢ () v (x) (2.5)

for fermions. ¢+(x) and w+(x) in (2.4) and (2.5) are the
position representations of the CCR and the CAR algebras.

These satisfy:

1
o

[T (x), ¢T(x")] =
[oC(x), ¢(x')] = 0 (2.6)
[o(x), ¢T(x")] = §(x-x")

whx), vix} = o0
{((x), ¥(x")} = 0 (2.7)
{Ylx), vk} = 8(x-x')
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B. Bose Condensation of the Ideal Gas

For a system of bosons, considering only the momen-

tum k in the index o, the one particle state (2.3) is

| k> = a;;|0> (2.8)

and the 2-particle state

+ +
[ Ry onsdeg® = @ oued, |0> (2.9
1 2 kl kZ
The free-particle Hamiltonian is
2.2
2 ks 2.2
e i + hok ,
Hy =l = = 1 % 7w (2:10)
1=1 k
2.2 2.2
h'k _ Bh k™y_+
<& lexp(- BBy 1> = <0]a, exp(- ERXyar|o>
2 9 (2.11)
= § exp(_ .B_fl__].(.__)
kk' 2M

The symmetrized cluster integral discussed in (1.1%) has

the form
2 2.2
3% = I L 0 o<x!fexpt- BB E k> (2.12)
R T ™M 1
l... 9 J=
1 1
kl".kz
(2.11) and (2.12) give
2. 2
S 1 hok
by = Ig % exp(—28—7ﬁ—) £2.13)

and the density series
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p =) 8 bz zg
2
25 2
Bhk
i Weicawho) w0 AN (2.14)
7 2.2 e ‘
K l-exp(- Bh k4 z ‘
2M

which can give a build-up of particles in the k=0 state.

C. Composite Particle Commutation Relations

In the conventional explanation of superfluidity in
L}He.,. the atom is treated as a boson and the arguments of
the previous section are taken as a model. Treating the
uHe nucleus as a boson, we can think of the atom as made
up of three particles, one nucleus and two electrons. The
atomic electrons have an exchange interaction with other
atomic electrons because of their fermi-statistics. This
exchange interaction depends on how much the electron
wavefunctions overlap. Conventionally, this interaction
enters into the energy in the atomic pair-potentials.
These exchange effects of the electrons affect the extent
to which the atom can be treated as a boson.

Let Qa(xl’° "ymf) be the wavefunction for a

.me,yl.

composite particle of my bosons and mg fermions. Operators

for this composite particle can be constructed4

LA 1
Aa ) Jn )t (m )t jdxl"'dxmbdyl"‘dymf Qa(xl"‘xmbyl"'ymf)
b ST

+

x 67 (x0T G Ty )y Ty o)
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p B L
A, = - fdxl...dxmbdyl...dymf Qa(xl...xmbyl...ymf)

/kmb):cmf)z

(2.15)
X ¢(X ¢(x Yy (y f l,b(yl

The commutation relations of A; and Aa are induced from
those of the particles of which they are composed. From

(2.15)

+ ~ 1 { !
[Aa’Aa'] = S fdxl...dxmbdyl...dymfdxl .dx bdyl Ay, e
b £

X Q:(xl...x )

1 1 1
mby1°"ymf)¢u'(xl"'meyl"’yéf
x [Y(y f w(yl)¢(x ...¢(xl), £2.316)

+
) (xl ¢ (xmb)w (yl w (ymf)]

If the composite particle is made up of one boson only, then

from (2.1) or (2.6),

+ —-—
[Aa ’Aa'] N aaa'

If it is made up of one fermion, then from (2.2)

+ + & +  _+
[Aa’Aa'] - [Ca’ca'] = CaCat=Ca1Cy

=8 ,-2ctc (2.17)
oo Qo o

= 80 ~2faxtax @, (xQE GOV (xHPG)

oo’

By considering examples, it is not difficult to see that in

general
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[Aa,A;.J: 6 it 0 (2.18)

a' oo’
where Caa' is a combination of normal ordered terms with
integrals of the wavefunctions. In certain pﬁysical cases,
it can be argued that such overlap integrals are smail in
comparison to one. Thus the condition for an approxiﬁate

Bose statistic

+

[A,sAg ] & 8 (2.19)

appears to be not too restrictive.
In considering the other two relations in (2.1), we
see that constraints enter on the type of composite parti-

cle we can treat as being a boson. From (2.15)

+ + _ 1 1 ' ' 1
[Aa’Aal ] = " 'Idxlo . -dxmbdyln o odymfdxlo [ dxmbdyl-on dyn'lf
(mb) . (mf) .
! ' i ' '
x Qa(xlo . -meylo . .ymf)@(x'(xl. . .meyl. -oymf)
+ + + +
x [¢ (xl)...¢ (xmb)¢ (yl)...w (ymf), (2.20)

+ +
NG IR AR I P A AN
Only in certain cases will (2.20)

+ o+
[Aa’Aa'] = 0
as in (2.1). As an example, consider the case of a com-
posite particle of two fermions. In computing [A;,A;,]

from (2.20), using (2.7), the factor
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SN IMCIMANCAPIA SN

S A S M CAD I S S A CAD M C S DI CAP AR E9

SR S M C A A C I BN 2 P LA ¢ 2O M 2 A €O
- 0 (2,21}

(2.21) in (2.20) gives

+ 4
[Aa’Aa'] =0

for a bound pair of electrons.

Girardeau has exhibited a formal connection between
the composite partiéle operators Aa’A; and the operators
ags a; of an ideal boson. H;s procedure amounts to an

algebra automorphism between these two. He executes this

through a unitary transformation U such that

+ +
U A |O>=a |0>
. e (2.22)

v _+
uat oA sk al LAt o>
(0] o o
L n i n

i.e., the state of one composite particle is transformed
to the one boson state, and the many composite-particle
state is approximately mapped to the many boson state to

the extent that overlap integrals are small.
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If we try to apply this prescription to composite

particles that are very non-boson in nature, we will get

contradictions. To see this, consider the case, where we

try to transform a system of fermions obeying (2.2) into

a set of bosons.

At = o
o o
A =¢C
o o

(2:28)

(2.23) into (2.25) means we assume that there exists some

U such that

U clo> = a |0

ucet ...ct Jo> = a
o o
1 n

(2.2) implies the Pauli exclusion principle

+ _+ + _+
CCq = =CoqCq = O
(2.25) implies that
+ _+ _+ + _+ _+
CoCoCq = ~CoColq = O
and
+ * 4+ + .+
U cacaca|0> = U c,C lo>
But
+ _+ n _t+ +
U caca|o> N aga,|0>
+ _+ + no ot _F +
U C,ChCul0> ~ aaaaaa|0>

(2.24)

(2.25)

(2.26)

(2.27)
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(2.27) 1s a contradiction because

ata +|0> # a+a+|
a
a oo a~o

0>

thus no such U can be defined.
Even restricting ourselves to a sub-algebra of the
a;, a, obeying the Exclusion Principle, i.e., restricting

our set of states to those where no more than one particle

is in any given state does not help. By (2.2)

+ + 4+
ct et = -c'c
1 g o |
and c. ¢ Jo> = -c; c; |o> (2.28)
1, %o 2 %1
+ 4 +  + + 4+
uc c |o>=a_ a_ |0>=a_ a_ |0> (2.29)
al 0«2 (!1 o 0.2 G.l
By (2.28)
u ¢, cp |o> = ut-c; c; )|o> = -u c, c; |o> (2.30)
1 % 2 %1 g B
+ _+
= -a_a_ |0>
Og

(2.29) and (2.30) give the contradiction that

+
at a, |0> = —a; a; | 0>
1 2 71

so no such U can be defined for many particle systems.
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PART II

THREE-BODY EXCHANGE EFFECTS:

THE TRIMER
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CHAPTER 3
EQUILATERAL TRIANGLE MODEL

In this chapter we present a simple model for ais-
cussing the problem of three particles bound together‘in
three dimensions by pair-potentials. The three particles
are assumed to be near the vertices of a rotating equi-
lateral triangle.

The three-particle Schroedinger equation, which is
in general insoluble in closed form, in this model read-
ily separates into center of mass, vibrational, and rota-
tional motion, each of which are solved for their contri-
bution to the total energy. An ordering of the rotational
states is noted for later consideration in connection with

exchange restrictions.

A. Center of Mass and Reluced Variables

Let W(£1’£2°£3) be the trimer wavefunction; it
depends on the nine coordinate components of the three

particles. The Schrodinger equation for an energy eigen-

state 1is
Hy = ﬁz{\72 V2 +v2 M + Vlp, ,r.,r. 00 = EY (3.1)
= = BN 5 Y = .
2M £1 £2 £3 1702 7%4R,3
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V(£1,£2,£3) is assumed to be due to pair potentials with
" an attractive part and a repulsive core. The minimum value
of the pair potentials is taken to be at an interparticle
separation of r_ . Near the equilibrium binding of the
three particles, an harmonic oscillator approximatibn is

made.
V(rs v a0 )N-3V + Lyn(n Y{[|rq-r,|-r 1% % [|r,-p.|-r 1°
nv1%8,2%7,3°Y o) 2 o) vl a2 o it N2 A3 o

2
+ [Igs—gll—ro] } (3.2)
We use the three-body Jacobi coordinates, in which the

center of mass

=1

and the reduced variables
p = r,-r
o aloak (3.4)

- &
g = ra= 7(rtr,)

are used to separate out the center of mass motion from

the relative motion. (3.3) and (3.4) are inverted:
£t R+ 2R 3
Pt R (3.5)
2 S 3
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From (3.3) and (3.4) it follows that

1 1
\ =ZV, + V. -3V
A RRLE S SR
_ 1 = _ 1
VP2 = §VR Vp 2Vc (3.6)
Y QY] n v
J,
Vr = §VR B vo
N3 n n
and
2 2 2 Ty g 2 3.2
(vr + vr ‘LT Yy = (§VR + 2]\7p s 7V0)xp (3:7)
Nl R2 A3 N "\ n

(3.6) into (3.1) and (3.5) into (3.2) give

2 2 2

2 _p fi 2 % 2

= T3 V5¢ - T2y VoV T 7(2M/3 ng = Ay
n

1" 2 2 l 2
+ %-V (ro){[|£|—ro] + [I—%R—gl—rol + [|g-7€|-rol 31
= Ey (3.8)

The first term corresponds to the center of mass motion
and its contribution to the total energy. Since the poten-
tial does not depend on 5, the center-of-mass part of ¢
is just that of a free particle of mass (31) and an energy

E .
c.m.
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B. Vibrational Energy

The relative coordinates 8 and g are measured in the
space-fixed frame. In view of the nearly-rigid character
of this trimer model and for notational convenience, look
at the motion when I is nearly along the space-fixed x- ixis
and g is nearly along the space-fixed y-axis. We do this
as an initial choice of axes and do not assume this as a
continuing restriction.

g:rog + Apx§ + Apy§ + Ang

(3.9)
/3" A A A A
= = + + +
g 7L oY onx Aoyy Aozz
In order to separate the vibrational motion, we introduce

the normal coordinates which are found classically

(Goldstein).
1
n = '—-—Ao’ + ZAp
i 8 g ¥ 27 %
1 1
n, = —Ao_ - FAp
2 /g y 2 X (3.10)
1
n., = —Ao_ + FAp
3 /é_ X 2 vy
n, = l—Ac - %Apy
V3

Inverting these,
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ApX = (nl-nz)
Apy = (n3—nu)
_ /3 (3.11)
AGx N _7(n3+n4)
_ /3
(3.11) into (3.9) gives
p = rX + (nl—nz)x 4 (ng—nu)y + Apz i
- /_3- ~ /é- A /—3- ~ A
g = 5rgy * pingtndx + —5ny*ny)y + Aoz
(3.12) gives
5 _ 1,3 _ 84
aApX 2 Bnl 3n2
8 _ 13 _ 9 q
BApy 2 Sns Bnu
I N (3.13)
9 1 9 0
e = — [ + —]
BAO'y ;/é. 3'(]1 31’12
(3.12) and (3.13) into (3.8) give
B 5% 5 5% Be sl 52 52 52
= =gel—— ¥ e k=Sl = wegel et § g
2(3) 3Ap AP 9Ap 2(=5) 9dAc dAo dAo
2 X y z 3 X y z

1n 2 1 2 i i 2
+ 5V (ro){flgl—ro] + [|—§£—g|—ro] + [|g—§£]—ro] Ty

= (E-E_*3V )y
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Y 2 2 /T 9 2
1;M{az"az”32‘L82+232+%82}“’
Bnl an ans Bn4 aApz BAGZ
(3.14)
;- .3 2, 8. 2
Fg Ve )3 n] + 7 ony + 5 gy

Note that n, is an "ignorable" coordinate as a vibration.
Later we will see that it corresponds to a rotation. The
other rotational motions come from the displacement coordin-
ate of o and g perpendicular to the plane. In (3.12) these
are Apz and Acz. The vibrational motion of the particles
about the equilibrium separation r separates; Y can be
written as a product of three harmonic oscillator wave-

functions in Nys Nos Ngs and the remaining function of ny >

Apz, Aoz. The harmonic oscillator frequencies are
n
.- ’3V (r,)
1 M
(3.15)
1
e 3V (ro)
2 3 2M

Each oscillator part has ground state energy %ﬁwi, so that

the total vibrational energy

. 1 1.
E, = Fhey + She, + Shu,
V' (r )
= %ﬁ(/?? + 2@) e (3.16)
11
3V (ro)

= 1+ VDR
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This vibrational energy is reviewed in Herzbergl and was
calculated by Bruch and Stensch}ce2 in a treatment of inert
gas trimers. They also calculated the first anharmonic
corrections to Eq. (3.16) arising from cubic aﬁd quartic

terms dropped in Eq. (3.2).

C. Rotational Energy

To discuss the rotational motion, we use a set of

Euler angles (a,B,y) with Edmond's convention.

o counterclockwise rotation about the space-fixed

z-axis

B = counterclockwise rotation about the body-fixed
y'-axis

Y = counterclockwise rotation about the body-fixed

z'-axis

The body-fixed z'-axis is taken perpendicular to the tri-
angle of the particles. We ignore the effect of the zero-
point motion treated in the previous section and treat the
trimer as a rigid body, and let the body x'-axis move
parallel to £> and the body-fixed y'-axis move with g.

We wish to relate the remaining variables in our
three body Schroedinger equation to the Euler angles and
show that the rotational part of the Schroedinger equation

takes the form of the quantum rigid rotor with moments of
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inertia I_=I = erz, I =Mr2. To do this we consider
Xy 270 z e}

a classical triangle rotating with angular velocities

W, W

b and w, . Using these classical angular velocities

y’
we motivate a set of formal differential relations of
coordinates (3.22).

For a classical triangle, the changes in our remain-

ing Ap, Ao coordinates can be related to rotational veloc-

ities by
Aog = w /E r
Z X 2 0
Apz = —wy Ty
. (3.17)
Ap.. = w_ r
y Z O
Ao = -w fg T
z 2 o0
Note that
* i o s [N
= =— Ao - 5 A
Ny /3 2 “Py
= - %—wz Ee 1 % w, T (3.18)
My = 79 To

From (3.17) and (3.18) the classical angular velocities

are related to these coordinates by

ZAGZ
w -
X /3 r
e (@]
- Ap
w = —2 (3.19)
‘y . rro
“”u
w = —
A n
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The classical geometric relations between angular velocity

and the Euler angles are3

w, = Bsiny - asinB cosy
e 5 Bcosy + asinB siny (3.20)
W, = gcosB + ;

Inverting (3.20)

w _siny - w_cos
v Y - ¥

o =
sinf
B = wycosy + wX81nY (3.21)
y = _ €95B( siny - w_cosy)
z sinf 'y X

Thus a set of differential relations between the Euler angle
and our remaining coordinates Apz, Acz, n, can be obtained

by substituting (3.19) into (3.21).

1 sinY 2 cosf
do = - =— — dAp - : dAo
ro sinB Z [Be s1inB Z
dg = - x cosy dAp_ + siny dAco (3.22)
e Z /—' Z
o 3r
o)
1 cosB ,1 .
dy = = =~ dn, * = (=— siny dAp_ + cosY dAo )
ro L sinf Po Z /§fo Z

(3.22) can now be taken over formally into the quantum

trimer.
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e oA B
Bnl+ T Y
_ (3.23)
) - 1 sinY 9 i 9 1 cosfsiny 9
= - = 2 — - — CO8Yr— t — —————
BApz T sinf Jdg, T ag Ty sinf oY
9 2 cosY 9@ 2 . 9 2 cosfBcosY 9
—_— e = =2 %+ S sinY— + - —
aAUz /§I’ sinB 30{. I 38 /§I‘ sinf SY
o e} o
The reduced Schroedinger is now
2 2 2 2
ol 9 P 3 9 _
- iﬁ{ x + 2 5t 5 ——2—}11) + (Ecm+EV—3VO)¢-E¢ (3.24)
E)nl\L 9Ap dAo
Z Z
where the total energy, E, is
E = Ecm+ EV+ ER (3.25)
(3.23) into (3.24) and (3.25) gives
2 2 "
_ A1 9 1 sinY 29 1 9
Egd = = ol=g —2 * 20~ o~ 3ImE 75 ~ T~ %83
ry dy o o
5 cosBsiny _EJZ 4 (3.26)
r sinB oY
o
3 2 cosY 2 2 3 2 cosBcosy 9,2
Ble e 5981 5 Vol 4 : =l
2( /3 sinB 3da /3p sin B /3 sinpB BY) H
o o
2., 1 52 1 5
ERw = " { + cotB==

2[%Mr§] 382 ZE%Mrg] 9k



Ly

o cotR : e | 1 52
oIMr?]  2[&Mr21 3y?  2[iMr?] sin’g 2ol
o) 27770 270

1 56088 32 ) (3.27)

1. 2 s 2 \
2[7Mro] sin“B dadY

P

(3.27) is the wave equation for a rigid rotoru of moments

of inertia

T = T = Lt
X y )
I = Mr
Z
It has solutions
DX . (a,B,Y) = exp(-ioam)d® ,(Blexp(-iYm') (3.28)
mm' " " p mm' p , :

which are angular momentum eigenstates with eigenvalue

equations
12y = 2+ 1)R%y
(3.29)
Ly = mhy
The a% ,(8) sol
oo i solve
2 L R
L cotsag . Bt sZom enk 4 plerly i =0
dp sin‘g o
(3.30)

writing the remaining factor of ¢ as this D;m' and using

(3.30), (3.27) becomes
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: 2
_ 1 v2 h
ERIP = {2C(R+1) = Ui } W (3.31)
O

Thus by changing the original variliables from (51,52,53) to

the set (R,n;,n,,n,,0,8,Y), ¥ is written as a product
n

. % |
P o= wF.P.(§ )¢(nl)¢(n2)¢(n3)Dmm,(a,B,Y) (3.32)

where wF P is the free particle wavefunction, ¢'s are
harmonic oscillator wavefunctions, and Dﬁm' is the rigid
rotor wavefunction,5 and by using the ground state harmonic

oscillator wavefunction, we get the energy

3V"(ro) m'2 ﬁz
(E-E_ ) = -8V _ + (/DA [—az— + {2(2+1) - =5} 7
o]

(3.83)

From (3.33) there is the following ordering of the rota-
tional states. The 2=0 state is the lowest; the %=1,

m'=1 state is higher than 2=0, but lower than the &=1,

m'=0.
ER(2=0) =0
3 K2
E,(2=1,m'=1) = 5= — (3.34)
R 2 2
Mr
o
2
E,(2=1,m'=0) = 2 h
R 2
Mro

It should be remarked that (3.33) is not a systematic ex-
pansion in powers of fi. The first anharmonic corrections

to the zero point vibration referred to following Eq. (3.16)

are also of order ﬁz.
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Appendix A lists the %=1 rigid rotor wavefunctions.
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CHAPTER 4
FERMION TRIMERS

We consider trimers composed of three identical
spin one-half particles. As these are fermions and obey
Fermi-Dirac statistics, the trimer wavefunctions must
satisfy certain antisymmetry requirements. To incorporate
spin, another factor is needed in the wavefunction; in the

equilateral triangle model, this is in Eq. (3.32).

A. Fermion Trimer Spin Structure

Intuitively, it is clear that there are two possible
spin doublets of trimers of spin one-half particles. If
all the spins align, the trimer has spin three-halves. If
one of the spins is aligned opposite to the other two,
then we have spin one-half (also referred to as the "mixed-
symmetry") trimer.

To construct the trimer spin functions, we start
with the spinor representation for each of the three par-
ticles, in which 4 (and ¥) denotes eigenstates of the
operators Si and S, ~with eigenvalues %ﬁz and %ﬁ (and %ﬁQ
and - %ﬁ). Spin operators for the trimer are formed by

adding the single particle operators
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v
1

2
(S,+S,.+S.)
£ RS (4.1)

V2
1

Z (Slz+822+832)

Spin functions for the trimer can then be formed as
products of the single-particle spinors. Since there are
two sﬁin states per pafticle, there are eight independent
three-particle spin states. To form an orthonormal set of
eigenfunctions of the trimer spin operators, it is necess-
ary to take combinations of the simple product states.

If D,/2 denotes the single-particle spinor representa-
tion, then the representatioh of trimer spin states is the

product representation:l

1
%

1 1 1
D? x D? x D? = D? x (D°+DY)
(4.2)
3/2

1
%

= D? + D%+ D

From this we see that a set of spin states includes two

doublets and a quartet giving

2(2x%+l) + (2x%+1)=8 independent spin states.

The quartet contains the four eigenstates of

2 . 5. 5.2 . _3 1 1 3
S = 7X7ﬁ . SZ = 7, —2, —2 h
Each doublet contains two eigenstates of

2 _1238.2, o T
S —7X7f1 .SZ—Z’ —2‘1:1

Denote the spin eigenstates of the trimer by

s,ms>, where



1

S2ls,ms>

1

Szls,ms>
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s(s+l)ﬁ2|s,ms>

(4.3)

m f|s,m >
s s

One of the possible ways of giving the eight spin

eigenstates of the trimer is the set2

A4 =

L (hetevttette)
/3

n

Lo (rettedtiet)
/3

Yy =

L (2444-444-411)
/6

1 (2444=444=144)
V6

L (hedovtt)
V2

L (vtd=ted)
V2

(4.4) is the spin quartet;

spin doublets.

N| w
v

No| w
\%

Nl w
N+
\Y

. (4.4)

(4.5)

(4.6)

(4.5) and (4.6) are the two
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For the spin |%, i%>_states, i.e., for the spin
% trimer, there are two doublets to contribute to the
wavefunction; one is symmetric and the other is anti-

symmetric under interchange of particles one and two.

B. Three-Particle Exchange

The set of three-particle exchanges consists of
three pair exchange, two cyclic exchanges, and the iden-
tity. This set forms a mathematical group, the permuta-

tion group of three objects. A permutation can be speci-

1 2 3
) (. 7)
By Sz Uy

where the a; are a rearrangement of 1,2,3. The permuta-

fied by the symbol

tion represented is the one where each number in the upper
line is replaced by the number below it on the lower line.
In this notation, the triangle symmetry group operations

are given below in (4.8)

g el 2 8Y 4.
R ¥

(@]

i
w
NN
= w
\‘/

w)

! i
o N
w N
=N = N
N W w w
N . SR

s} os}

| I
/-\ /-\
N =
w N w N
H W N W
v \/
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This group has the multiplication table (4.9)

E A B C D F
E E A B C D T
A A E D F B C
B B F E D C A

(4.9)

C C D F E A B
D D C A B B E
F F B C A E D

Another notation often used for these permutations is

= D’ c' = F (Ll'olo)

C. Exchange Restrictions on the Fermion Trimer

Wavefunction

1. General form of wavefunction

Operations A,B,C are pair exchanges; as such, when
operating on the fermion trimer wavefunction, they must
take it to minus itself. D and F are three-cycle exchanges
and correspond by (4.9) to two pair-exchanges; thus these

operations must leave the trimer wavefunction invariant.
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The Hamiltonian, the angular momentum operators,
and the spin operators (4.3) all commute, so that simul-
taneous eigenStates are possible. The wavefunction is
written as a product of a spin part and a spatial part
which includes the rotational eigenstates. A wavefunction
in the form (3.32) is not possible in general for a non-
rigid body, where the body-fixed z-component of angular
momentum is not a good quantum number. Apart from the
free particle motion of the center of mass, the wave-

function (for each spin state ¥),

2
¥= o, X
2 (4.11)
2 2 '3
¢m = Z gmv Dmmv

L : . "
where gt depends only on the internalrelative coordinates
5 ; 2
of the three particles. X is the spin part, and the Dmm'
are the symmetric top wavefunctions discussed in (3.28).
L

These Dmm' 's serve here as a complete set of &,m eigen-

states.

2. Parity eigenstates

As we will discuss later in Section D, the permuta-
tions of the three particles can be understood as proper
rotations. There is a distinct operation,3 space-inversion,

which also leaves the Hamiltonian invariant.
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Spin is an angular momentum, and as such is a
pseudovector_unaffected by an inversion, therefore it is
sufficient to look only at the spatial part of the wave-
function in imposing the symmetry under inversion.

We require that ¢ in (4.11) be a parity eigen-
state, i.e., Py=*y. The effect of the parity operation
is only on the Euler angles, as the interparticle coor-
dinates are unaffected. The effect is that of rotating
the triangle by m about the body-fixed z-axis. This means

increasing the Euler angle Y by ﬂ.q

% 2
PDmm:(OL,B,Y) Dmmv(o‘aB:'Y""")

- ' z i
et D 1 (a,B,Y) (4.12)

(-1)™' D]f]'m,(a,B,Y)

The requirement that ¢ in (4.11) is a parity eigenstate
means that only exclusively even or odd m' can contribute

to Y.

3. Exchange restrictions on spin—% trimer eigenstates

For the spin—% trimer, eigenstates of the spin quartet
(4.4) are symmetric under all interchanges and therefore are
invariant under the group operations. In the product rep-

resentation the group acts only on ¢§ (4.11) .
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: : ‘ 0 .
The 2=0 rotational eigenstate Dyg=1 is excluded
because it is invariant under all exchange operations

For %=1, from (4.11)

1.1 1.1 L il '
= +
¢m ngml : goDmo g—le-l (4.13)
il . . 1 1
Because ¢m must be a parity eigenstate g6 and the g, can-

1

not both contribute. We will be guided in choosing g+l=0
in a later section.
4. Exchange restrictions in spin—% trimer eigenstates

For the mixed-symmetry trimer, there are two spin
doublets (4.5) and (4.6) from which ¥ is constructed. The
doublet X in (4.5) is symmetric under the exchange of par-
ticles one and two; the doublet X4 in (4.6) is antisym-

metric under this pair exchange.
+ ¢ X (4.14)

¢a and ¢S are antisymmetric and symmetric,respectively,
under the pair exchange of one and two, so that Yy is anti-
symmetric overall.

Consider the l%,%> case. The same relations also

hold for |Z,-3>.

XS = —l{2+f+*¢++“++f)
a (4.15)
K. = (A4 t-dth)

a vz
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We consider the pair exchange A and the cyclic exchange

D which are sufficient to generate the permutation group.

A Xg T Xg
(4.16)
1 V3
DXg = 2% ¥ 2Xa
A Xq F "Xy
7 (4.17)
. 3 1
DXy ® g% = 7%a

Requiring y be antisymmetric under A and symmetric under

D, (4.14), (4.16), and (4.17) allow us to deduce that

AY = -y = (AP Ix, - (A DX,

Dy = [-2(ps) - Lps ) Ix, (4.18)
/3 1
+ [—7(D¢a) - 7(D¢S)]Xa
and that
Ap_ = -¢
@ @ - (4.19)
1 3
Do, = 2% * T2t
A¢s . d)s ¢
_ /3 1 4.20)
Dég = = 2%5 ~ 2%
¢a and ¢S are expanded in rotational eigenstates
e 1 1 1
¢ = by Dml * P DmO *b_y Dna
(4.21)

- 1 1 1
LT | Dml ¥ Ay D T By Dh-1
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where the as and bi are functions of the internal coor-
dinates. We do not assume that they are symmetric, but
allow them to change under interchanges. As in the pre-
vious section we cannot have both even and odd parity
states contributing. Guidance in the choice will be pro-
vided later, where we Qill see that bo=ao=0. From this
we will be able to conclude that ¢a and ¢S are each made

1 1
up of Dm. and Dm—l'

x

D. Equilateral Triangle Case

1. Exchange group

The case of the equilateral triangle provides guid-
ance for the more general case, because it can be syste-
matically solved in terms of the group of covering opera-
tions on the triangle.5

This group consists of five operations, labelled
A,B,C,D,F in addition to the identity E. A,B,C are
rotations by m about the body-fixed axes in the plane of
the triangle as is shown in Fig. 4-1. D is a clockwise
rotation by ) in the plane of the triangle, and F is a

3

clockwise rotation by 5% in the same plane.
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Figure 4-1
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This group of covering operations has the multi-
plication table (4.9) and the representation (4.8).

Another representation of this group is provided

by the (22+1)-dimensional matrices

2

Dmm'

(a,B,Y)
The group operations in this representation are

L

E=D__,(0,0,0) =386 .
2 2+m
A = D '(O,—W’O) = (—'1) 6_ ]
. 27 (4.22)
_ o m Ty _ 2+m 1m—
B 4 D '(—'§’,"'ﬂ‘,§') . (_) e 3 G_m’m'
. 2m
2 m Ty _ 2+m ~im—s.
C = Dy (ammymg) = (DT TS
L 2m imzl
D=0D ,(——3,0,0) = e 38 ¥
. 2T
') 2m -1lm—s
F =D ,(—3,0,0) = e 36 .

If G is one of the operations in (4.22), its effect on

a rotational eigenstate in (4.11) is

L _ L L
G ¢ = 1% gt D on

ml

(a,B,Y) Gm" ; (4.23)

m

2. Further exchange restrictions on spin-g-trimer

Applying A from (4.22) on ¢; in (4.13) by (4.23) we

see that
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o .
g] = -8 (4.24)

Applying B from (4.22) the same way, we get
12T 1

gi e 3= -g%l (4.25)

1 i 4
By =& © 0 (4.26)

so only the D% term in (4.13) contributes, and the ground
o)

state of the Spin-"% trimer for the equilateral triangle
is

¢i = g* D; Ca,B,Y) (4.27)

“ s g 1 s
3. Further exchange restrictions on spin-- trimer
&~

Applying operation A from (4.22) on N in (4.21) by

(4.23), using (4.19):

Ab, = -b_,

Ab_=b (4.28)
o O

Ab_ = -by

Likewise in ¢S, using (4.20)

A al = a
(4,.29)

1
I
jol]

A a
o

Aa .= a
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B and D on ¢a and ¢S, treated similarly, give a set of
relations that, combined with (4.28) and (4.29) together
with the relation AB=D from the multiplication table

(4.9), allow us to conclude

o
1
I
e
o)
H

a =b =20 : (4.30)

og
1
e
)

(4.30) into (4.21) gives

. 1 a 1

¢_ = (-ia,)D * (id <ID

a 1" "ml 1""m-1 (4.31)

- 1 1
0 = 210 * 230
so that for the equilateral triangle
N : 1 : 1 1 1
p=[(-ia )D_, + (ia_iID ,Ixg * La;D_, + a_iDp 11X,

(4.32)
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CHAPTER 5
VARIATIONAL METHOD FOR THE BOSON TRIMER

Variational methods have been used successfully to
bound boson trimer groﬁnd state energies.1 In this chap-
ter we consider a loosely bound trimer of three spinless
particles in three dimensions. Because of the exchange
symmetry of bosons, the ground state has angular momentum
2=0. This leads to a considerable simplification in the
Schroedinger equation (3.1) when it is written in terms
of the interparticle coordinates.

Four potentials are considered: the square well,
the exponential, the Yukawa, and the Gaussian. A vari-
ational calculation is made for each using the Jastrow
trial function and a numerical determination is made of
the minimum necessary potential attraction for the
trimer to be bound. A comparison of this bound on the
potential with a bound from the known two-body case shows

that our treatment gives a more restrictive upper bound.

A. Interparticle Coordinates

We introduce the inter-particle coordinates



|r
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r = pgl = lxgxl
s = Ipygl = Ixyrsl (5.1)
€ = Ziel = 121g,!

The potential in (3.1) is ssumed to be due to pair-
potentials V(rij) which depend only on the interparticle

separations.

Viry,r,,rg) = Vclﬁs‘ﬁll’ lzy-z5l s |£1'£2|)
= V(r,s,t) (5.2)
= V(r)+V(s)+V(t)

To integrate over the three-particle volume, it is suffi-

cient to integrate over the two particle positions Paqs
v

523 including the orilientation angle 6 between 31 and

Tog3s since these specify the positions of all three par-

ticles. This volume integral has the form

o 1
[ f rlar s?ds d(cose)
r=0 s=0 -1

o

(5.3)

The law of cosines t2=r2+82—2r80056 for the triangle de-

fined by (5.1) gives

rsd(cos6) t dt (5.4)

and t:|r—sl when cos6=1, and t=r+s, when cos6=-1. Putting

this into (5.3), the volume integral is



U
& i r+s

f f rst drdsdt (5.5)
r=0 s=0 t=|r-s|

(5.4) has a symmetric form that is valuable in computing

volume integrals.

B. Trial Wavefunction

In the variational method, an intelligent guess is
made about the ground state wavefunction, which is written
in terms of an adjustable parameter. The variational en-
ergy of this system is calculated as a function of this
parameter. This energy is then minimized over the param-
eter and the result serves as an upper bound to the exact
energy of the system.

The wavefunction is chosen to be a symmetric func-
tion of the interparticle coordinates. Evidence2 indi-
cates that the Jastrow trial function is a reasonable
choice near threshold binding since it gets the correct

form of the wavefunction at large distances.

~a(r+s+t)

g(r,s,t) = N e (5.6)

Using volume integral (5.5) to compute the normalization

je~2a(r+s+t)

+
/ g2 rst drdsdt=1=N2ff rst drdsdt
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which gives

N
)

Q
w

N = (5.7)

3

C. Kinetic Energy

The kinetic energy3 is calculated in rectangular

coordinates from (5.6) using the operator

2
. _h 2,52, 52
(K.E.) = —5p(Vi+V5+V3) (5.8)
(5.8) on (5.6) gives
(K.E.)g = _EE 6a2 + a2(r2t+s2t—t3+rs2+rt2—r3+st2+r28—s3)
wH 28 2M rst

- ho(S+o+ (5.9)
The expectation value of the kinetic energy is
<K.E.> = [[fg(K.E.)g rstdrdsdt
: _ﬁE,ZlOaG ? ? P}S {6a2+a2(r2t+82t—t3+r82+rt2—r3+st2+r28fﬁ)
ZM 7 rst
00 |r-s]
—ha(elilyy o=20lrtstt) o andsat

r s t

Doing the integrals in (5.10) is straightforward. The
values of integrals needed are tabulated in Appendix B.

The result is
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SK.E.> = — —— 5.11)

D. Models

We will now consider four potentials, the square
well, the exponential, the yukawa, and the gaussian. For
each we calculate the variational energy and from this we
determine an upper bound to the binding parameter at

threshold.

1. Sguare well potential

In (5.2) we use the pair-potential

Voo Pig3* Ty
Vir,.) = J (5.12)
i 9 otherwise

The expectation value of the potential energy,
<V(r,s,t)> = [[fgV(r,s,t)g rst drdsdt (5.13)

with g from (5.6), (5.13) gives

10 6

Vlr,s,t)> = 2% [[[(V(2)+V(s)+V (L) Irste

-2a(r+s+t)

drdsdt

10 6
= 2 7a 3fffV(r)rste-2a(r+S+t)drdsdt (5.14)
10 6 o0 r+s
2 %% [ | [ pete 2225t grasat

7 < r=0 s=0 t=|r—s

L 3 2
(uaro) 5(uaro) (Haro) -Lor

+ + + (uuro)+1]e

- O
= =3V {1-[—y ) 7 }
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Introducing the dimensionless parameters

X = Lar
)

Mrgvo (5.15)
K = h2

% is the variational parameter and K is the binding
parameter. Combining (5.11) and (5.14) with (5.15), we

get the equation:

E x2 Xl‘l 5x3 x2 -xX
('é'v:) '—'WK——]."' [ﬂ'*‘u—z-—"'——z—"‘ x+1l]e (5.16)

o

Using a programmable calculator, the variation over
x in (5.16) has been studied numerically as a function of
K‘

Figure 5-1 shows as a function of variational

B
3VO
parameter x, formula (5.16), for three values of K. The
top figure shows that when K=2, the minimum in the graph
has positive energy, hence the trimer is not bound. The
bottom figure has K=2.15; the energy at the minimum is
negative and the system is bound. The center graph

corresponds to K=2.096023, which gives threshold binding

for wavefunction (5;6).

Kgb = 2.096023 (5.17)

Because our variational energy (5.16) is an upper

bound to the exact energy for the potential considered,



K = 2,096023

3

1 T T T T ) 1 T i 1 ¥ 3 ( ]

B K=2.15
|

i | ]
L 1 2
S
S
[ K 1 g $ i 1 L 1 t i 1 1 i 1

Figure 5-1 Boson Trimer Variational Energy, Square Well Potential
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(5.17) is an upper bound on the exact threshold binding
parameter for the square well.

A comparison is now possible between (5.17) and the
corresponding binding parameter in the two-body problem.
Using the Hall-Post lower boundu and the Bruch-Sawada
upper bound5 in the trimer ground state energies we know
that the three-body threshold binding parameter 1ies be-

tween % of the two-body parameter and the two-body value6

is ﬂ2/4 = 2.467401, thus
2 ﬂ2 b
e i 1.644934 < Kc < KC = 2.096023 < 2.467401 (5.18)

From (5.18) we see that we have considerably improved the

upper bound on‘KC using (5.1-).

2. Exponential potential

As in Section 5, with the pair-potential

Vlrg.) = <Ve r13/ % (5.19)
we get
210,56 -§~ i ;
(P, 1)> = 7 {[f [—Voe o~y & "°-V_ e Olrst
(5.20)
-2a(r+s+t)

X e drdsdt
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Use the dimensionless parameters (5.15), add (5.11)

to (5.20) to get the energy

2 X |
+ 7 — ] (5.21)

Numerical analysis of (5.21) yields threshold bind-

ing at

Kgb = 1.222041 (5.22)

The corresponding KC in the two-body problem is found by
the tabulated zeros of the Bessel function, in the exact
solution to the reduced Schroedinger equation, to be 1.4L6.
This gives the bounds on the three body threshold binding

parameter Kc:

%(1.uus) = .96u5KCSK“b= 1.222041<1.L46 (5.23)

From (5.23) we see that (5.22) is a considerably improved

upper bound.

3. Yukawa potential

We proceed as before using the pair-potential

r &
_0 - rij/ro (5.24)
ij

5 m
(Maro) (Haro)

+ +
L 3 2
(l+uaro) (l+4aro) (1+Huro)

31 (Maro)s
<V(r,s,t)> = -—Vo 7[7 ]

€5.25)
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By (5.15), (5.11), and (5.25)

2 5 L 3
E 5 x [ % + b4 & X ] (5.26)

3Vo 56 K 14(1+x)u 7(1+x)3 7(1+x)2

Numerical analysis of (5.26) yields threshold bind-

ing at
Kgb = 1.462678 (5.27)

We use the Hulthen and Laurikainen7 result for the two-

body problem, 1.6738816, and compare.

%(1.679816) = 1.1198773 SKCSKZb = 1.4626781<1.679816

(5.28)
From (5.28) we see that (5.27) improves the upper bound on

K .
c

4. Gaussian potential

We proceed as previously, with the pair-potential

2 2
-ris/v
ij) 5 & 1’4o (5.29)

we use the dimensionless variational parameter

(5.30)

= X
Y = 2aro =5

2
~ n 2 ,6.c4 9152 3 Y

Vip,g.,L)>= —3vo{-7jy +§TY +[7Tw =Y Y 1V/me

(5.31)

x [1-erf(y)]}
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where erf(Y) is the "error function".

2 _t2
= [ e dt , (5.32)

erf(Y) oo

i

0=

By (5.31), with (5.11), (5.15), and (5.30)

2
E S XY [k B 2_ Oyt . 9_%y5+% 31v7eY [l-erf(Y)]

(5.33)

A numerical analysis is done using a numerical ap-

proximation8 for the error function, with the result

KEP = 2.247772 (5.3Y4)

The two body result is obtained by numerical integration

to be 2.684.

K < Kgb = 2.247772<2.684

2 -
7(2.684) = 1.789 B

IA

(5.35)

From (5.35), we see that (5.34) improves the upper bound.
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CHAPTER 6

VARIATIONAL METHOD FOR THE FERMION TRIMERS

In the rigid trimer model of Chapter 3 and in the
exchange discussion of Chapter 4, we saw that the ground
state of each of the fermion trimers has angular momentum
2=1.

In Chapter 5, we used a form of the Jastrow trial
function and found that it was easy to work with and that
it gave good results.

In this chapter we construct trial wavefunctions for
the spin—% and Spin—% trimers. We require that these trial
wavefunctions (i) meet the exchange symmetrization require-
ments; (ii) reflect the angular momentum quantum numbers;
and (iii) incorporate much of the siﬁplicity of the boson
trial function;

These trial functions are then used in variational
calculations for the same pair-potential models as in the

previous chapter. Numerical upper bounds are given for

the threshold binding parameters.

A. Coordinate Relations

To proceed with the simplest equations, we use
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rectangular space-fixed coordinates to construct the
wavefunctions and to calculate their kinetic energies.
These coordinates are related to internal coordinates

and the Euler angles by a set of relationsl (6.1) below.

x; = (cosocosBcosY-sinosinY)&.
-(cosocosBsiny+sinacosY)n,+(cosasinB)g,

Vs S (sinacosBcosY+cosasinY)Ei (6.1)

—(sinacosBsinY—cosacosy)ni+(sinasinB)Ci

z; = —(sinBcosY)Ei+(sinBsinY)ni+cosBci

Our choice of body-fixed axes involves letting the trimer
lie in the &-n plane with the center of mass at the origin.

These conditions are

Ly T Ly = L3 F 0 (6.2)

It will be useful to note that from the form of the 2=1

S . 2
rigid rotor wavefunction,

D00 = cosfB
1 1
D..-D
01 0-1 . sinBcosy (6.3)
/7
D%1+D%—1
= sinfsiny



76
Exchange constraints are imposed by using the anti-

symmetrizer,

1

1230 (6.8

Antisymmetrizer = L(1-p. -P,.~P,.+C C

6 127 F237F31%C1 23t

where Pij is a pair-exchange of particles i and j, C123

and C! are the two three-cycle exchanges as discussed

123
in (4.,10).

B Spin—%-Trimer (Mixed—-Symmetry Trimer)

A Spin—% trial wavefunction

A direct way of meeting the requirements stated in
Section A.1 is to multiply the boson trial wavefunction
(5.6) by a function of the particle coordinates.

For the mixed-symmetry trimer, the form of the wave-

function is given in Eq. (4.18)

b= ooxg * duXg (6.5)

Guidance in constructing ¢a and ¢S is provided by the

exactly soluble case of the pair potential

k r..
1]

B -
2

We construct ¢a and ¢S by multiplying (5.6) by a linear
function of the inter-particle coordinates. There is

some arbitrariness in this choice, reflecting the
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degeneracy of the space Quantization of non-zero angular
momenta. ¢a must be antisymmetric under the interchange

of particles one and two.

¢, = N(zl—zz)e—u(r12+r23+r21) . (6.6)

¢S must be symmetric under the interchange of particles

one and two.

-o(r, +tr,tr_ . )
¢ = NL[(z,-2.)-(z,-2.)]e 12" ey 81
S /§ 3 i 2 3
' (6.7)
Putting (6.5), (6.6), and (6.7) together
' -alr, ,+r, *r,.)
- 12 23 31
¥ =Nz, -z, )e Xs (6.8)
-olr, +r,,*r )
. _3[23_%(Zl+22)e 12* %33 a1 X}
/3

Plzw =-y 1s automatic and C123w=w is readily verified.

Combining (6.1), (6.2), and (6.3) with (6.8)

o ArL . & . 1
b5 N8y =8p)=1(ny-n)) I0g; +IERE ) =E.(nyng) I0g )

—a(r) ) *rygtrg, )
X e 3
(6.9)

2 g : ’ §
+ [ BCL= (8 =8 )+ (Ey-E)-i(ng-ny ) +iln,-ny) IDE,

b [CEgmEy)-(E,=Eg)=iln mn D +iln,=n ) IDG_;)

—a(r12+r23+r31)
x e Xa}
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This is consistent with the arguments of Section 6 of
Chapter 4.
In terms of the volume integral discussed in Section
A.2 of the previous chapter, the normalization N for ¢
when integrating over two vector interparticle coordinates
is

m ,
N s —R20) (6.10)

(2m)V3

2. Spin—% kinetic energy

In rectangular coordinates, the trimer kinetic energy

operator is

2
B v? v v2 o+ vl

1t Vq 2 3) (6.11)

(6.11) on (6.8) gives

: Nﬁz (za[—Z(zl-zz) : (23_21) . (22—23)]6
2M ) o Pog

-a(r12+r23+r31)

~0(r, ,tr, ,tD .4 )
12 723 31 )X

e

2. .2, 2
(zl-zz)(Vl+V +V3)e

2 S

(6.12)

(z —zs)Jea(r12+r23+r31)

(z.-2.)
i Lipmgfecd oL 2
/3 Y31 Pos

—a(r12+r23+r31)

+

1 2 2 el
[23-7(zl+22)](V1+V +V3)e

5 )xa}

The expectation value of the kinetic energy follows from
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integrating (6.8) time (6.12) over the three-particle
positions. The orthogonality of the spin functions,
splits the kinetic energy into two parts each integrating

to one half of the total.

2 2 ;
_hTe” 77
<K.E.> = M 18 (6.13)
6r in terms of (5.15)
<K.E.>_ 77_ x° (s
Vv - 288 K i

o

3 Spin—% potential energy

As in the previous chapter, the potential energy is

taken to be due to pair potentials. As in Eq. (5.2),

V<£l’£2’£3) = V(|£3—£l|’|£2_£3|’|£l—£2|)

V(ir,s,t) (6.15)

Vir) + V(s) + V(t)

<V(r > = 3<V(r1 )>

12°T232T31 2

(6.16)
= 3(¢a,V(r12)¢a)+3(¢S,V(r12)¢s)

Calling the interparticle distances r,s,t,
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© © pts
<V(p,s,t)> = (2a)° %»{ [ f f rOst V(r)e 20T ) asar
0 0fr-s|
T.7 .55 s 20 (pts+t)
+2 [ [ vt Ve ¥ ardsdt}
00 |r-s :
(6.17)
4. Models
a) Spin-n%-square well potential
We consider the pair-potential
V' 5 P.s<D
o’ "ij "o
V(ri.) = (6.18)
J 0, otherwise
(6.18) in (6.17) gives
rq r+s
8 U ¢ 3 ~20(r+s+t)
<V(r,s,t)>= -V _(2a)" g { [ [ [ »rste drdsdt
0 0 |r-s
(6.19)
Yo , DI*S
+2 [ [ rsdt 20X+ ) g g0ay)
0 0 |r-s|

To the result3 of integrations (6.19), expressed in terms

of x=4aro from (5.15), add (6.14).

IS A X 3-[ x° +X5+13Xu ux3 3 2
o

=X
oo go Iy t9 tpX t8x+3le T} (6.20)
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Numerical analysis of (6.20) gives the threshold
value of K. Because this is a variational calculation the
energy calculated is an upper bound to the exact energy,
so that K.C calculated here is an upper bound. Our result
is that

Ktb - 4.077222 . (6.21)

Interpretation of this and later numbers are left for the

concluding chapter.

b) Spin—% exponential potential

The potential

T “P. /P
V(rij) = -Voe "ij" 7o (6.22)
into (6.17) gives
gu., 29 pis 3 -%—-2a(r+s+t)
<V(r,s,t)>= -V _(20)° g { [ [ [ »°te-o drdsdt
0 0 |r-s
© © ptg 3 —%——2&(r+s+t) (6.23)
+2 [ [ 1rste O drdsdt}
00 |r-s]

The result of integrations (6.23) expressed in terms of

x:H&ro with (6.14) added on is:

E 77 %2 .2 %' R 2 g9 T gt
v ok 3T Tttt tI Lo strT o
Vo, 289k T3 C1+s) (1+%) (1+x)
3
+ L x (6.24)
3
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Numerical analysis of (6.24) gives Kgb for this potential.

Kﬁb = 2.373106 (6.25)

c) Spin—%-Yukawa potential

The potential

3 Tis
V(r,.) = -V_ -2-e Fo (6.26)
ij O Pss
1]
gives
o o |T*s] L netmins
<V(r,s,t)> = -V _(2a)" 7 P 1 f [ [ »r°ste”o
00 |r-s]
x drdsdt
(6.27)
oo TS D oa(ptstt)
+2ff [ s°te”o drdsdt}
00 |r-s]|

The result of (6.27) expressed in terms of x=udro with
(6.14) added on is:

2 7 B g g g gl g

== —— = _[= += += += +
Ciex)” 5 t1es3” © €1aw)° ©c1ex)?

(6.28)
Numerical analysis of (6.28) gives Kgb for this potential.

Kgb = 2.834612 (6.29)

]
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d) Spin—%-Gaussian potential

The potential

—r2 /r2
V(r..) =V_e 13 © (6.30)
ij o
into (6.17) gives
r+s r2
g u, = 3 ——7—2a(r+s+t)
<V(r,s,t)>= -V _(20)" gl [ [ [ r7st e Tg drdsdt
00 II"‘SI
(6.31)
r+s r2
© 3 == -2a(r+s+t)
+2 [ [ rste?Ts drdsdt}
00 |r-s]|
=X

The result of (6.31) expressed in terms of Y=2aro—2 from

(5.32), with (6.14) added on is:

E .77Y _¢_.8 ,12 26 10 . 1 8
- s e A= Gt
D 135 135 5 (6.32)

o

2
v [S 413 . % yii _%g 74 % v31 /T [1-erf(y)I}

Numerical analysis of (6.32) gives

Kgb = 4.368196 (6.33)

C. Spin—% Trimer

1. Spin—%—trial wavefunction

The wavefunction for the sPin—% trimer has the form



8l
from (4.17)

1

_ 1
¢ - gO Dmo(aaB:Y) : (6.31{-)

gi is a function of the internal coordinates and is anti-
symmetric under particle exchanges. We use the anti- -

symmetrizer (6.4) on the factor

(xl—x2)[(y3—yl)—(y2—y3)] (6.35)
and get
(xly3-x3yl+x2yl—xly2+x3y2—x2y3) (6.36)
from which we construct the trial wavefunction

7 S 5 o)

- -al(r
¢ = N(xly3—x3y1+x2yl—xly2+x3y2—x2y3)e 12723 ~31

(6,37)

Transforming (6.37) to body-fixed coordinates using (6.1)

we see that

¢ = 3NLE,n -E;n,] DI (0,8,7) (6.38)

in agreement with (6.34) and the arguments of Section C.3 of
Chapter U.
For the volume integral (5.4) the normalization A is

7 5
N = (6.39)
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2 Spin—%ikinetic energy

In rectangular coordinates, the kinetic energy oper-

ation (6.11) on (6.37) gives

2
_Nh P
~80[%X V=X Y X V=XV, X,V y ][ + ]
M 1737 %31 “2Y17 %12 *3r 27 2 3 12 r23 r3l

+ az[x -X +x -X +x -X 10 - )2

1Y37X3Y TRV TR YT XY XY g 12781
(6.40)
A A 2 A A 2 —-a(r, ,tr,t1, )
+ (r23—r12) + (r3l—r23) 1} e 12 23 31

Calculating the expectation value of the kinetic energy
from (6.40) by multiplying by (6.37) and integrating, we
get

<K.E.> = == ——— = =— =V (6.41)

B . Spin-% potential energy

o Y6
VD 5 s P s Py I 8 ? fo"f ¢2 V(r,s,t)rstdrdsdt
12°723°7 31 00 lr_sl £0 3
by (6.15) and (6.37)
12,10 «© o ris
N [ [ (-rSst-2ps t+ir st
00 |r-s
(6.42)
~-2a(rt+s+t)

+ 2r53t3)V(r)e drdsdt
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Doing thes and t integrals in (6.42)

212a10 it -Lhar r7 r6 r5 r4
<V(r,s,t)> = [——§§——J [ vir)e ( et u+ .S)dr
0 150~ 5a° 4o 8o
(6.43)
4. Models
a) Spin-%—square well potential
In (6.43), the potential (6.18) gives
,12,10 ?o b, S gl S
<V(r,s,t)> = =V [F—1I e ( —+ + + )dr
BrRE: D 1502 50° 4o 8a°
(6.044)
These integrals are done using the result
r n_-Yor r
o r e o o
' n_-4or _ _ .o n n=1_ =4ox
é r'e dr = ie * o) é r e dr
(6.45)
Adding in (6.41) we get
2 7 6 5 .4 3 2
E .8 X _ _ ta r X 19~ 29%  x X", 3% -x
e SRkt M (AT M S M et PO

Numerical analysis of (6.46) gives bi for this

potential.

Kgb = 7.238101 (6.47)
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b) Spin~%»exponential potential

In (6.43), the potential (6.22) gives

212a10 @ —[%—+ua]r gt - il Ll )
<V(r,s,t)>=-V [Z—2—1 [ e "0 ( o+t ——t—2) dr
0

(6.48)

Doing the integrals and adding in the kinetic energy

from (6.41)
R Pt R LI S S S
Vo 11K Ti30140% 1 (e 1T (148 L (24 ®
(6.49)
Numerical analysis of (6.49) gives
K = 5.021898 (6.50)
c) Spin—%—Yukawa potential
In (6.43), the potential (6.26) gives
1 ,
12_10 o ~[=tholr _6 5 _4
<V(r,s,t)> ==V [2~§%——]ro [ e Yo (gt gt pt—)dr
i 0 150° 50° 4o’ 8a
(6.51)

Doing the integrals and adding in the kinetic energy from

(6.41)
R S S P SR . N e G,
VO iy A - i3 (1+X)7 X (1+%) 1 (1+x)5 x (l+x)u

(6.52)
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Numerical analysis of (6.52) gives

K4 = 6.6558u1 , (6.53)

d) Spin—% Gaussian potential

In (6.43), the potential (6.30) gives

2
o X _ yapr 7
<V(r,8,t)> = —Vo %%[é e Pg (£2%§l— (6.54)
2(20r)® 5 4
+ ———%E—— + (20r)° + (2ar) )d(2ar)]

Doing the integrals in (6.54) in terms of y=2or,= %-from

(5.30) and adding in the kinetic energy from (6.41),

E. . 18 % 8 . 1u 32 .12 14 10 , 8 8
v IR ges Y tfues Y e Y Yt
L 6 8 15 y 13 2 11 1 9
33 Y tlgg Yy - Y tmY oIy
2 s 2
$ 2 ¥ 7 e¥ [l-erf(y)1} (6.55)

Numerical analysis of (6.55) gives

Kgb - 8.896328 (6.56)
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FOOTNOTES

R. N. Hill, J. Math. Phys. 15, 9 (1974); M. E. Rose,

Elementary Theory of Angular Momentum, (Wiley, N.Y.,

1957).
See Appendix A.

Three particle integrals are given in Appendix B.
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CHAPTER 7
CONCLUSIONS

The trial wavefunctions used in the previous chapter
were constructed to incorporate the exchange symmetry and
the angular momenta. The numerical results of the varia-
tional calculations with these wavefunctions are summarized .
in Table 7-1, the four rows corresponding to the four po-
tential models treated.

From Table 7-1, we calculate Table 7-2, a set of
derived ratios that is useful in evaluating the methods

used.

A. Theorems Satisfied

1. Hall Post lower bound

The Hall-Post lower boundl on the three boson ground
state energy gives a lower bound of two-thirds to column G

of Table 7-2.

) ,
E = LT+

>0

This 1s satisfied for the models considered.



Table 7-1

BINDING 2 Body 3 Body
PARAMETERS _
N _ ub, . _ ub,2=1 ub,2=1
A. KC(Z-O) B. Kc(l—l) C. Kc (2=0) | D. Kc (5:1/2) E. Kc (s=3/2)
R 5 9 13 17
Square Well % = 2.467Y4 T2 = 9.8696 2.096023 4.077222 7.238101
) 6 10 14 18
Exponential 1.446 7.0u49 1.222041 2.373106 5.021898
7 11 15 19
Yukawa 1.67982 9.082 1.462678 2.834612 6.655844
) 8 12 16 20
Gaussian 2.684 12.100 2.247772 4.368196 8.896328
! This follows from the exact solution ® Equation 5.17
to the reduced Schroedinger equations 10 Equation 5.22
2 This is from the tabulated zeros of !1 Equation 5.27
the Bessel function in the exact 12 Equation 5.34
treatment. Mott & Massey, Theory of 13 Equation 6.21
Atomie Collisions, (1965) '* Equation 6.25
® From Hulthen § Laurikainen, Rev. Mod. 15 Equation 6.29
Phys., 23, 1 (1951) 16 Equation 6.33
#88 Numerical integration 17 Equation 6.47
> Exact solution '8 Equation 6.50
7 Numerical integration; also Rogers, ke Equation 6,53
Gaboske, § Harwood, Phys. Rev. 4,1, 20 Equation 6,56

1577 (1970)

6



Table 7-2

BINDINE F. 2 z He 2 I. % 2 K. £
PARAMETERS

Square Well 4.000 . 849 1.652 2.933 L1413 .733
Exponential 4.875 . 845 1.641 3.473 . 337 L7138
Yukawa 5.407 .871 1.688 3.962 .312 .733
Gaussian 4.508 .838 1.628 3.315 .361 .735

¢6
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2. Bruch-Sawada upper bound

There is an upper bound2 on the three boson ground
state energy. To be an improvement over this bound, our

upper bound must satisfy:

I
=

(7.2)

>0

This is easily true in all cases. This says that three

bosons bind before two do.

3. Hall lower bounds for fermions

The Hall lower bound® for the spin—% trimer relates
its ground state energy to the 2=1, two-body ground state

energy. From it we get a lower bound to column K

2
= > =
K Z 3 (7:3)

o]t

(7.3) is satisfied for each case, though it is noted that
our upper bounds get quite close to this lower bound.

The Hall lower bound to the spin—% trimer relates its
ground state energy to the first two states of the two-

body problem. From this we get the lower bound to column

H:
2
> £
Z 3 (7.4)

plw

which 1s satisfied.
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B. Conjectures Suggested

1. Spin % lies below spin %_

That the Spin—% fermion trimer binds before the spin-

% trimer was suggested earlier. It seems borne out by

D < E (7.5)

which is the case for each model potential.

2. Three fermions bind before two bind with 2=1

This conjecture is based on the facts that

J =
(7.6)

Wit g

K = < 1

Comparing the numbers on these columns of Table 7-2 to
those for(7.2)it appears that this conjecture is very

likely, though it has not been proven.

3. The lower bound on the spin—% trimer is one half

that of the spin—% trimer

This is a much stronger conjecture than (7.5) and

would be the analogue of (7.3). The statement is that

Jd =

os/ ke
w|

>
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Looking at column J of Table 7-2, we see that this con-
jecture is satisfied for all but the yukawa potential.
The reason why the yukawa potential is excepted can be
understood in terms of the £=0 nature of its first ex-
cited state. This is suggested by the Carr Post im-

proved lower bound.u

C. Improved Upper Bounds

1. Boson trimers

The upper bounds calculated for the boson cases lie
considerably below those previously known. Column G of
Table 7-2 is bounded below by .667. The Bruch-Sawada
upper bound (7.2) for this column is 1. The square well
has been looked at by Sitenko and Kharchenko,5 their
value for our column G is 0.8. Humberston, Hall, and
Osbor'n6 have studied the exponential and yukawa potentials.
Our values agree with theirs within the plotting accuracy

of their graphs.

2. Fermion trimers

a) Spin—%

The Hall lower bound(7.3)in column K is .667. Our

upper bound comes extremely close to this lower bound
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thus determining the threshold binding parameter quite

well.

b) Spin—%

Our upper bounds in column J come extremely close

to the conjectured lower bounds.

D. Future Applications

The four potentials studied here indicate that the
form of the trial functions used is essentially correct
and that the method of incorporating symmetry requirements
here will extend to more realistic cases.

More specific numerical results for physical trimers
require that more appropriate potential models be treated
instead; models that more closely describe the inter-
molecular forces are, for example, the Lennard-Jones 12-6
potential or the Morse potential. The qualitative dif-
ference of the more realistic molecular models from those
treated here is in the relatively thick cores of the po-
tentials.

While most of the algebraic simplicity of the vari-
ational energy expressions will be lost in going to more
complicated potentials, and while numerical solutions

seem almost certain, nevertheless, it is hoped that the
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bounds derived on the binding parameters for the more
realistic potentials will be equally as good as those
for the four models studied here.

It is also believed that the same approach is also
applicable to other few body problems such as the four-
body problem, though little information exists about

these.
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FOOTNOTES

R. L. Hall and H. R. Post, Proc. Phys. Soc. London

90, 381 (1967).

L. W. Bruch and K. Sawada, Phys. Rev. Letters 30, 25
(1973).

R. L. Hall, J. Phys. A, 1, 468 (1968).

R. J. M. Carr and H. R. Post, Phys. A, 4, 665 (13971).
A. G. Sitenko, V. F. Kharchenko, Sov. Phys. Uspekhi,
14, 125 (1971), p. 141, Fig. 6.

J. W. Humberston, R. L. Hall, and T. A. Osborne, Phys.

Letters 27B, 195 (1968).
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APPENDIX A

RIGID ROTOR WAVEFUNCTIONS FOR 2=1

cosB
gl = sinB = l(cosy + isiny)singB
V2 V2
= —e—iY L sinBf = l(—cosY + isiny)sinB
V2 V2
. L sinB
V2

e1laty) %-(1 + cosB) = ei(a+Y)coszg
= ei(a_Y) % (1 - cosB) = ei(u—Y)sinZ%

-ia 1 .

= e = sinB
V2
n' g e ) % (1 - cosB) = e-i(a_Y)sinZ%

= e_i(a+Y) % (1 + cosB) = e—i(a+Y)coszg

99
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APPENDIX B

THREE-PARTICLE VOLUME INTEGRALS

" © © r+s £ m.n —-a(r+s+t)
I(L,m,n) fr=0 fS=O ft:]r—s|r s te dr ds dt

s
S

I(L,m,n)

(5/12)a""
(5/16)a"5
(7/16)a""®
(9/16)a"*®
(7/8)a"7
(31/16)a"®
(3/4)a"®
(21/16)a”’
(9/4)a"®
(51/16)a"®
(351/64)a”?®
(435/32)a" 10
(621/64)a"?®
(1089/6u4)a~1?
(15/4)a"®
(225/32)a"°
(75/4)a" 10
(1125/32)a"1"
(45/8)a~"8
(405/32)a"?
(825/32)a"1?
(1245/32)a"1?
(1575/32)a"1?
(315/u)a~ 10

NO N FFEFFWOWWWWWWWNNNEFEFRE (o)
OHNHHMFHOWNHMHHWWNNNHHONKFEFRFEFH
OCOO0OHOOOHMHOHONMHOHFHOOHMHFOFOH
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